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Introduction

• Let Pt be the closing price of a given asset at time t.

• Define the rerturn at time t as

rt =
Pt − Pt−1

Pt−1
≈ log(Pt/Pt−1)
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Figure 1: Prices (left panel) and returns (right panel) of Bitcoin
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Introduction

• Returns and log-returns are often used interchangeably.

• In this work, we use log-returns and refer to them simply as returns.

• Volatility is defined as √
V(rt | Ft−1)

.

• Other widely used risk measures include Value-at-Risk (VaR) and Expected Shortfall (ES).

• Estimating ES requires first estimating VaR.

• Estimating VaR, in turn, requires volatility estimation.
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Introduction

• Forecasting volatility plays a crucial role in a wide range of applications across economics,

finance, insurance, energy, and environmental management, to quote only a few.

• Given its importance, numerous approaches have been developed for forecasting daily

volatility.

• While several options benefit researchers and experienced practitioners, they pose

significant challenges for (untrained) practitioners, who must choose among these models

for their daily tasks, often with limited or no information to guide their decisions.
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Introduction

If we truly want practitioners to adopt the new procedure we are proposing, it must outperform

strong benchmarks. It is very difficult to convince people from other fields to use our methods

if they believe they offer no real advantage.

Main goals and contribution

Offer insights to help researchers and practitioners in selecting the most appropriate volatility

model for their data (based on user-friendly implementations).

Our focus will be on easy-to-use, user-friendly implementations available in the open-source R

environment.
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Models

We consider four widely used families of models for forecasting volatility:

• GARCH: Generalized Autoregressive Conditional Heteroskedasticity, introduced by

Bollerslev (1986).

• SV: (vanilla) Stochastic Volatility model, proposed by Taylor (1982).

• MSGARCH: Markov-Switching GARCH proposed by Haas et al. (2004), which allows for

multiple volatility regimes.

• GAS: Generalized Autoregressive Score model, introduced independently by Creal et al.

(2013) and Harvey (2013).

Hereafter, let rt = (Pt − Pt−1)/Pt−1 ≈ log(Pt/Pt−1) denote the return at time t, where Pt

represents the closing price at time t. We assume E(rt |Ft−1) = 0
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Models

GARCH model

Assumes that the conditional variance at time t is fully determined by past squared returns

and its own past values. In its simplest form, the model is specified as:

rt = σtϵt , (1)

σ2
t = ω + αr2t−1 + βσ2

t−1, (2)

where ω > 0 and α, β ≥ 0 are model parameters, σ2
t represents the conditional variance (or

squared volatility) at time t, and the innovation term ϵt has zero-mean and unit-variance.

In this study we considered the standard Normal and Student-t innovation distributions.
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Models

SV model

Assumes that the log-conditional variance evolves stochastically following an AR(1) process.

Its dynamics can be described as follows:

rt = exp(ht/2)ϵt , (3)

ht+1 = µ+ ϕ(ht − µ) + σηt , (4)

where ht is the log conditional variance at time t, µ, ϕ and σ are parameters to be estimated,

ηt ∼ N(0, 1). In this study, ϵt follows either a standardized Normal or Student-t distribution.
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Models

MSGARCH model

This specification allows for multiple volatility regimes. In its simplest form, the dynamics can

be described as follows:

rt = σ
(k)
t ϵt , (5)

σ
2(k)
t = ω(k) + α(k)r2t−1 + β(k)σ

2(k)
t−1 , (6)

where ω(k) > 0 and α(k), β(k) ≥ 0 are the model parameters in regime k, σ
2(k)
t denotes the

conditional variance in regime k at time t, and ϵt follows either a standardized Normal or a

standardized Student-t distribution.

The regime-switching mechanism is governed by the latent process {St}, assumed to be a

first-order Markov chain with transition probability matrix Π. Its elements are given by

πij = P(St = j | St−1 = i), (7)

representing the probability of moving from state i at time t − 1 to state j at time t.
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Models

GAS

Its central idea is that the dynamic behaviour of time-varying parameters depends on their

own past values and the score of the conditional density function (hence the name score

model).

Let rt |Ft−1 ∼ p(rt ; θt) with θt ∈ Rp being a vector of time-varying parameters fully

characterising p(·). Then, in the general, unrestricted, GAS specification, the dynamics of θt
is given by

θt+1 = κ+ Ast + Bθt , (8)

where st = St(θt)∇t(rt , θt), with ∇t(rt , θt) being the score of the conditional density function

and St(θt) = It(θt)
−γ with typical values of γ ∈ {0, 1/2, 1}, and κp×1, Ap×p and Bp×p.

10



Models

GAS

When the parameter space is restricted, it is common to use a mapping function Λ(·) such
that

θt+1 = Λ(θ̃t+1), (9)

θ̃t+1 = κ̃+ Ãst + B̃ θ̃t . (10)

In particular, setting γ = 0 and using an exponential function for the time-varying scale

parameter under a Student-t distribution assumption, we obtain the Beta-t-EGARCH model

of Harvey and Sucarrat (2014).

rt = σtϵt , (11)

log(σt) = δ + ϕ log(σt−1) + κ
( (ν + 1)r2t−1

νσ2
t−1 + r2t−1

− 1
)

(12)
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Models

• Parameters are estimated by Maximum Likelohood

• For SV, the procedure of Wahl (2018) is used.

• In all cases, we are interested in V(rT+1|FT ), where FT is the information available up to

time T

12
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Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Simulation setup

• The four models previously described are used both as true DGPs and for generating

one-step-ahead volatility forecasts

• Sample sizes: (n = 500, 1000, 2500)

• Innovation distributions: standardized Normal and Student-t7

• Parameter values were selected to reflect characteristics of both emerging and developed

markets as well as to reflect values commonly adopted in the literature.

• Series are contaminated with a single additive outlier in the final month

• 1,000 Monte Carlo replications

Parameters

More than 20 parameter vector configurations were designed to closely replicate patterns

observed in real data.

13



Monte Carlo Simulations

Model Parameter values 1 Parameter values 2

GARCH ω = 0.18, α = 0.09, β = 0.89 ω = 0.37, α = 0.14, β = 0.77

GAS κ = 0.03,A = 0.22,B = 0.98 κ = 0.06,A = 0.34,B = 0.92

SV µ = 1.74, ϕ = 0.97, ση = 0.17 µ = 1.15, ϕ = 0.90, ση = 0.36

MSGARCH

ω1 = 0.005, α1 = 0.025, β1 = 0.95

ω2 = 0.1, α2 = 0.25, β2 = 0.70

P =

[
0.75 0.30

0.25 0.70

] ω1 = 0.01, α1 = 0.16, β1 = 0.30

ω2 = 0.18, α2 = 0.46, β2 = 0.20

P =

[
0.98 0.05

0.02 0.95

]

Table 1: Two parameter configurations (over 20) used in the Monte Carlo experiment
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Monte Carlo Simulations

Loss Function Formula Loss Function Formula

MSE R−1∑R
i=1

(
σ̂2
i − σ2

i

)2
MAE R−1∑R

i=1

∣∣σ̂2
i − σ2

i

∣∣
QLIKE R−1∑R

i=1

(
σ2
i

σ̂2
i

− log
σ2
i

σ̂2
i

− 1

)
MAEL R−1∑R

i=1

∣∣log σ̂2
i − log σ2

i

∣∣
MSEL R−1∑R

i=1

(
log σ̂2

i − log σ2
i

)2
MAESd R−1∑R

i=1 |σ̂i − σi |

MSESd R−1∑R
i=1 (σ̂i − σi )

2 MAEP R−1∑R
i=1

∣∣∣∣ σ̂i

σi
− 1

∣∣∣∣
MSEP R−1∑R

i=1

(
σ̂i

σi
− 1

)2

Table 2: Loss functions employed in the evaluation of volatility forecasts.

To select the best model (or set of best models) the model confidence set of Hansen et al.

(2011) was used
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Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
R
C
H

N
=

5
0
0

GARCH-N 0.0608 0.0034 0.0068 0.0048 0.0070 0.1670 0.0608 0.0497 0.0607

GARCH-T 0.0538 0.0027 0.0055 0.0039 0.0054 0.1569 0.0565 0.0463 0.0563

GAS-N 2.4896 0.0064 0.0107 0.0247 0.0236 0.2422 0.0691 0.0606 0.0716

GAS-T 0.0730 0.0035 0.0073 0.0053 0.0068 0.1851 0.0651 0.0541 0.0644

MS-N 0.1189 0.0062 0.0124 0.0089 0.0128 0.2402 0.0863 0.0709 0.0859

MS-T 0.0992 0.0049 0.0100 0.0073 0.0096 0.2187 0.0773 0.0640 0.0764

SV-N 0.1443 0.0086 0.0186 0.0122 0.0149 0.2838 0.1100 0.0871 0.1015

SV-T 0.1114 0.0062 0.0133 0.0090 0.0109 0.2398 0.0904 0.0726 0.0845

N
=

1
0
0
0

GARCH-N 0.0282 0.0014 0.0028 0.0020 0.0028 0.1136 0.0406 0.0335 0.0405

GARCH-T 0.0245 0.0012 0.0023 0.0017 0.0023 0.1048 0.0374 0.0308 0.0374

GAS-N 1.9691 0.0045 0.0071 0.0197 0.0171 0.1910 0.0513 0.0461 0.0536

GAS-T 0.0617 0.0023 0.0046 0.0038 0.0044 0.1498 0.0507 0.0429 0.0502

MS-N 0.0817 0.0039 0.0077 0.0058 0.0081 0.1896 0.0666 0.0554 0.0669

MS-T 0.0566 0.0028 0.0056 0.0041 0.0055 0.1611 0.0568 0.0471 0.0564

SV-N 0.1209 0.0072 0.0153 0.0099 0.0128 0.2703 0.1046 0.0828 0.0974

SV-T 0.0999 0.0050 0.0106 0.0074 0.0091 0.2254 0.0839 0.0676 0.0789

N
=

2
5
0
0

GARCH-N 0.0100 0.0006 0.0012 0.0008 0.0012 0.0720 0.0262 0.0214 0.0262

GARCH-T 0.0080 0.0005 0.0010 0.0007 0.0010 0.0660 0.0243 0.0197 0.0243

GAS-N 0.0841 0.0018 0.0035 0.0036 0.0040 0.1243 0.0397 0.0343 0.0402

GAS-T 0.0590 0.0016 0.0033 0.0030 0.0031 0.1246 0.0418 0.0354 0.0414

MS-N 0.0355 0.0019 0.0038 0.0027 0.0039 0.1339 0.0479 0.0395 0.0482

MS-T 0.0303 0.0011 0.0023 0.0019 0.0023 0.1034 0.0352 0.0297 0.0352

SV-N 0.1098 0.0065 0.0137 0.0088 0.0116 0.2644 0.1025 0.0810 0.0960

SV-T 0.1034 0.0044 0.0093 0.0068 0.0080 0.2176 0.0803 0.0649 0.0759

Table 3: Forecast evaluation under uncontaminated series. DGP: GARCH with standardized

Student-t innovation distribution. Parameters values close to the ones obtained in emerging markets 16



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
S

N
=

5
0
0

GARCH-N 0.0758 0.0045 0.0089 0.0059 0.0094 0.1868 0.0714 0.0567 0.0719

GARCH-T 0.0744 0.0042 0.0082 0.0056 0.0089 0.1803 0.0684 0.0546 0.0692

GAS-N 0.1552 0.0075 0.0144 0.0106 0.0168 0.2396 0.0889 0.0716 0.0907

GAS-T 0.0419 0.0029 0.0058 0.0036 0.0059 0.1488 0.0581 0.0457 0.0580

MS-N 0.1412 0.0088 0.0173 0.0114 0.0184 0.2678 0.1033 0.0819 0.1039

MS-T 0.0959 0.0062 0.0125 0.0080 0.0122 0.2214 0.0861 0.0679 0.0852

SV-N 0.1325 0.0098 0.0210 0.0125 0.0172 0.2933 0.1212 0.0929 0.1121

SV-T 0.0797 0.0058 0.0121 0.0073 0.0105 0.2215 0.0896 0.0694 0.0845

N
=

1
0
0
0

GARCH-N 0.0589 0.0030 0.0059 0.0042 0.0063 0.1590 0.0593 0.0476 0.0597

GARCH-T 0.0530 0.0028 0.0054 0.0038 0.0058 0.1514 0.0565 0.0454 0.0570

GAS-N 0.1198 0.0057 0.0107 0.0082 0.0130 0.2040 0.0743 0.0605 0.0761

GAS-T 0.0221 0.0015 0.0030 0.0019 0.0029 0.1052 0.0408 0.0322 0.0405

MS-N 0.1003 0.0069 0.0134 0.0086 0.0152 0.2258 0.0870 0.0691 0.0887

MS-T 0.0696 0.0044 0.0087 0.0056 0.0089 0.1827 0.0703 0.0557 0.0701

SV-N 0.1119 0.0082 0.0173 0.0103 0.0146 0.2808 0.1155 0.0887 0.1075

SV-T 0.0651 0.0046 0.0096 0.0059 0.0084 0.2099 0.0844 0.0656 0.0799

N
=

2
5
0
0

GARCH-N 0.0465 0.0022 0.0043 0.0032 0.0047 0.1337 0.0487 0.0396 0.0495

GARCH-T 0.0425 0.0020 0.0039 0.0030 0.0044 0.1277 0.0465 0.0379 0.0472

GAS-N 0.1219 0.0049 0.0089 0.0076 0.0120 0.1851 0.0650 0.0539 0.0674

GAS-T 0.0079 0.0005 0.0010 0.0007 0.0010 0.0639 0.0245 0.0195 0.0244

MS-N 0.0745 0.0049 0.0092 0.0060 0.0116 0.1828 0.0706 0.0559 0.0727

MS-T 0.0377 0.0023 0.0045 0.0030 0.0046 0.1354 0.0509 0.0408 0.0510

SV-N 0.0982 0.0072 0.0152 0.0090 0.0131 0.2743 0.1127 0.0866 0.1057

SV-T 0.0533 0.0036 0.0076 0.0047 0.0068 0.2000 0.0796 0.0621 0.0760

Table 4: Forecast evaluation under uncontaminated series. DGP: GAS with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in emerging markets 17



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
S
V

N
=

5
0
0

GARCH-N 0.5510 0.0434 0.0784 0.0487 0.1153 0.5507 0.2178 0.1708 0.2396

GARCH-T 0.5214 0.0420 0.0759 0.0468 0.1098 0.5436 0.2150 0.1687 0.2381

GAS-N 0.7431 0.0475 0.0842 0.0561 0.1320 0.5795 0.2235 0.1770 0.2495

GAS-T 0.4303 0.0362 0.0671 0.0403 0.0887 0.5136 0.2061 0.1606 0.2242

MS-N 0.5349 0.0444 0.0813 0.0494 0.1153 0.5611 0.2242 0.1751 0.2443

MS-T 0.5231 0.0413 0.0765 0.0472 0.1026 0.5594 0.2219 0.1739 0.2406

SV-N 0.5815 0.0391 0.0843 0.0527 0.0726 0.5548 0.2278 0.1755 0.2128

SV-T 0.4341 0.0322 0.0646 0.0397 0.0685 0.4977 0.2016 0.1564 0.2028

N
=

1
0
0
0

GARCH-N 0.4757 0.0380 0.0693 0.0427 0.0975 0.5223 0.2067 0.1621 0.2269

GARCH-T 0.4715 0.0383 0.0694 0.0426 0.0985 0.5239 0.2076 0.1627 0.2295

GAS-N 0.6814 0.0444 0.0769 0.0511 0.1383 0.5464 0.2129 0.1679 0.2389

GAS-T 0.4005 0.0339 0.0628 0.0376 0.0824 0.4996 0.2004 0.1562 0.2181

MS-N 0.4892 0.0413 0.0763 0.0456 0.1038 0.5415 0.2181 0.1697 0.2375

MS-T 0.4728 0.0387 0.0713 0.0433 0.0971 0.5340 0.2128 0.1664 0.2314

SV-N 0.5298 0.0353 0.0761 0.0479 0.0650 0.5376 0.2190 0.1695 0.2048

SV-T 0.3978 0.0291 0.0581 0.0360 0.0617 0.4767 0.1920 0.1494 0.1937

N
=

2
5
0
0

GARCH-N 0.4618 0.0369 0.0671 0.0414 0.0942 0.5115 0.2025 0.1587 0.2227

GARCH-T 0.4654 0.0377 0.0682 0.0419 0.0976 0.5170 0.2048 0.1605 0.2270

GAS-N 0.7886 0.0451 0.0772 0.0534 0.1437 0.5494 0.2118 0.1675 0.2395

GAS-T 0.3921 0.0334 0.0617 0.0369 0.0815 0.4920 0.1975 0.1539 0.2155

MS-N 0.4681 0.0410 0.0742 0.0438 0.1069 0.5297 0.2144 0.1664 0.2370

MS-T 0.4307 0.0361 0.0662 0.0398 0.0909 0.5072 0.2028 0.1583 0.2221

SV-N 0.5254 0.0347 0.0743 0.0471 0.0646 0.5330 0.2160 0.1675 0.2031

SV-T 0.3888 0.0284 0.0565 0.0351 0.0608 0.4688 0.1886 0.1468 0.1910

Table 5: Forecast evaluation under uncontaminated series. DGP: SV with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in emerging markets 18



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
M
S
G
A
R
C
H

N
=

5
0
0

GARCH-N 0.0095 0.0056 0.0116 0.0025 0.0105 0.0610 0.0786 0.0343 0.0775

GARCH-T 0.0076 0.0050 0.0101 0.0021 0.0099 0.0584 0.0754 0.0329 0.0755

GAS-N 0.0115 0.0060 0.0121 0.0027 0.0121 0.0642 0.0809 0.0356 0.0807

GAS-T 0.0090 0.0055 0.0112 0.0024 0.0104 0.0620 0.0794 0.0347 0.0785

MS-N 0.0076 0.0052 0.0106 0.0021 0.0100 0.0591 0.0773 0.0335 0.0762

MS-T 0.0095 0.0054 0.0112 0.0024 0.0102 0.0611 0.0780 0.0341 0.0764

SV-N 0.0201 0.0150 0.0332 0.0061 0.0250 0.1051 0.1490 0.0620 0.1341

SV-T 0.0161 0.0112 0.0245 0.0047 0.0189 0.0880 0.1220 0.0513 0.1111

N
=

1
0
0
0

GARCH-N 0.0049 0.0031 0.0063 0.0013 0.0060 0.0444 0.0580 0.0251 0.0577

GARCH-T 0.0044 0.0030 0.0060 0.0012 0.0058 0.0437 0.0569 0.0247 0.0569

GAS-N 0.0066 0.0038 0.0075 0.0016 0.0078 0.0505 0.0638 0.0281 0.0644

GAS-T 0.0067 0.0039 0.0080 0.0017 0.0075 0.0522 0.0665 0.0292 0.0660

MS-N 0.0053 0.0033 0.0068 0.0014 0.0066 0.0479 0.0613 0.0268 0.0610

MS-T 0.0057 0.0030 0.0060 0.0013 0.0060 0.0454 0.0570 0.0251 0.0568

SV-N 0.0166 0.0133 0.0288 0.0052 0.0226 0.1022 0.1450 0.0603 0.1317

SV-T 0.0133 0.0092 0.0199 0.0038 0.0159 0.0813 0.1118 0.0472 0.1027

N
=

2
5
0
0

GARCH-N 0.0027 0.0018 0.0037 0.0007 0.0035 0.0348 0.0457 0.0198 0.0455

GARCH-T 0.0026 0.0018 0.0037 0.0007 0.0036 0.0360 0.0467 0.0203 0.0468

GAS-N 0.0294 0.0039 0.0071 0.0026 0.0105 0.0505 0.0580 0.0264 0.0593

GAS-T 0.0058 0.0031 0.0063 0.0014 0.0058 0.0471 0.0592 0.0262 0.0587

MS-N 0.0021 0.0015 0.0030 0.0006 0.0030 0.0321 0.0415 0.0181 0.0415

MS-T 0.0021 0.0014 0.0028 0.0006 0.0028 0.0306 0.0390 0.0171 0.0390

SV-N 0.0161 0.0127 0.0273 0.0050 0.0218 0.1026 0.1455 0.0605 0.1329

SV-T 0.0124 0.0084 0.0180 0.0035 0.0146 0.0792 0.1084 0.0459 0.1000

Table 6: Forecast evaluation under uncontaminated series. DGP: MSGARCH with standardized

Student-t innovation distribution. Parameters values close to the ones obtained in emerging markets 19



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
R
C
H

N
=

5
0
0

GARCH-N 3.0883 0.1346 0.2001 0.1837 0.5500 1.2254 0.3537 0.3240 0.4873

GARCH-T 3.1632 0.1421 0.2104 0.1914 0.5799 1.2572 0.3629 0.3326 0.5047

GAS-N > 10 0.7279 0.5480 1.1870 > 10 2.9836 0.5240 0.5635 1.2506

GAS-T 0.3745 0.0195 0.0355 0.0274 0.0477 0.4594 0.1529 0.1310 0.1710

MS-N > 10 0.4670 0.1858 0.8437 > 10 1.7158 0.2822 0.2763 0.7470

MS-T 2.0181 0.0850 0.1237 0.1144 0.3986 0.8429 0.2521 0.2266 0.3355

SV-N 1.2415 0.0617 0.0946 0.0808 0.2407 0.6494 0.2054 0.1800 0.2581

SV-T 0.2877 0.0164 0.0300 0.0223 0.0398 0.3886 0.1333 0.1126 0.1464

N
=

1
0
0
0

GARCH-N 2.8981 0.1419 0.2165 0.1879 0.5286 1.2992 0.3838 0.3484 0.5255

GARCH-T 2.9288 0.1456 0.2216 0.1914 0.5453 1.3150 0.3895 0.3532 0.5351

GAS-N > 10 2.4645 0.7976 4.3400 > 10 6.7300 0.6696 0.7664 3.1338

GAS-T 0.3323 0.0182 0.0333 0.0250 0.0441 0.4436 0.1500 0.1276 0.1675

MS-N 2.2681 0.1139 0.1699 0.1471 0.4476 1.0159 0.3090 0.2764 0.4223

MS-T 1.9027 0.0972 0.1494 0.1272 0.3523 0.9658 0.2956 0.2639 0.3918

SV-N 1.1118 0.0622 0.0982 0.0793 0.2137 0.6791 0.2167 0.1896 0.2749

SV-T 0.3140 0.0184 0.0330 0.0245 0.0465 0.4010 0.1365 0.1157 0.1529

N
=

2
5
0
0

GARCH-N 2.6449 0.1410 0.2203 0.1836 0.4778 1.3199 0.3980 0.3583 0.5390

GARCH-T 2.6555 0.1429 0.2228 0.1853 0.4874 1.3283 0.4009 0.3608 0.5438

GAS-N > 10 1.2223 0.9560 1.9592 > 10 4.6304 0.7861 0.8607 2.0082

GAS-T 0.3220 0.0181 0.0330 0.0244 0.0434 0.4429 0.1515 0.1282 0.1690

MS-N 2.0581 0.1143 0.1783 0.1453 0.3938 1.0940 0.3419 0.3024 0.4560

MS-T 2.0453 0.1096 0.1714 0.1419 0.3795 1.0995 0.3378 0.3013 0.4470

SV-N 1.0545 0.0628 0.1016 0.0793 0.1981 0.7094 0.2280 0.1991 0.2887

SV-T 0.3410 0.0204 0.0366 0.0267 0.0515 0.4218 0.1442 0.1220 0.1632

Table 7: Forecast evaluation under contaminated series. DGP: GARCH with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in emerging markets 20



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
S

N
=

5
0
0

GARCH-N 2.3374 0.1265 0.1979 0.1592 0.4280 1.1736 0.3661 0.3223 0.4919

GARCH-T 2.2496 0.1293 0.2022 0.1591 0.4346 1.1698 0.3681 0.3230 0.4971

GAS-N > 10 0.5658 0.4565 0.8755 > 10 2.4650 0.5154 0.5090 1.0801

GAS-T 0.3279 0.0183 0.0331 0.0242 0.0449 0.4211 0.1467 0.1224 0.1646

MS-N 1.4286 0.0842 0.1324 0.1015 0.2885 0.8304 0.2749 0.2350 0.3573

MS-T 1.3299 0.0694 0.1088 0.0871 0.2532 0.7555 0.2462 0.2120 0.3146

SV-N 0.7552 0.0474 0.0793 0.0581 0.1415 0.5895 0.2047 0.1711 0.2423

SV-T 0.2182 0.0142 0.0259 0.0177 0.0342 0.3384 0.1237 0.1009 0.1360

N
=

1
0
0
0

GARCH-N 2.4847 0.1440 0.2245 0.1760 0.4877 1.2687 0.3990 0.3503 0.5430

GARCH-T 2.4037 0.1442 0.2251 0.1740 0.4859 1.2633 0.4004 0.3504 0.5446

GAS-N > 10 0.6541 0.6814 0.9031 > 10 2.9270 0.6593 0.6602 1.3132

GAS-T 0.2777 0.0167 0.0305 0.0216 0.0404 0.4003 0.1423 0.1176 0.1588

MS-N 1.4652 0.0981 0.1544 0.1127 0.3298 0.9060 0.3073 0.2602 0.4046

MS-T 1.1638 0.0768 0.1237 0.0904 0.2454 0.8100 0.2739 0.2324 0.3499

SV-N 0.8344 0.0564 0.0924 0.0663 0.1723 0.6341 0.2187 0.1838 0.2705

SV-T 0.2195 0.0150 0.0271 0.0184 0.0371 0.3332 0.1222 0.0996 0.1360

N
=

2
5
0
0

GARCH-N 2.4426 0.1515 0.2367 0.1810 0.5081 1.3132 0.4175 0.3652 0.5690

GARCH-T 2.4032 0.1516 0.2369 0.1798 0.5081 1.3093 0.4180 0.3649 0.5695

GAS-N > 10 0.8662 0.9124 1.1191 8.7939 3.5148 0.7818 0.7963 1.6479

GAS-T 0.2436 0.0160 0.0292 0.0200 0.0383 0.3867 0.1401 0.1148 0.1561

MS-N 1.5815 0.1109 0.1753 0.1257 0.3644 0.9950 0.3378 0.2863 0.4486

MS-T 1.4069 0.0912 0.1471 0.1086 0.2873 0.9248 0.3086 0.2637 0.3996

SV-N 0.8587 0.0620 0.1008 0.0708 0.1911 0.6581 0.2282 0.1915 0.2883

SV-T 0.2146 0.0162 0.0291 0.0190 0.0403 0.3349 0.1247 0.1010 0.1404

Table 8: Forecast evaluation under contaminated series. DGP: GAS with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in emerging markets 21



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
S
V

N
=

5
0
0

GARCH-N 2.3405 0.1669 0.2518 0.1810 0.6163 1.1962 0.4074 0.3438 0.5685

GARCH-T 2.4600 0.1786 0.2682 0.1924 0.6637 1.2478 0.4235 0.3583 0.5971

GAS-N 9.1394 0.3148 0.3923 0.3864 2.1378 1.6785 0.4840 0.4360 0.7924

GAS-T 0.6880 0.0609 0.1036 0.0635 0.1748 0.6623 0.2568 0.2037 0.3083

MS-N 1.3548 0.1124 0.1775 0.1166 0.3800 0.9082 0.3345 0.2721 0.4364

MS-T 1.3345 0.1042 0.1659 0.1111 0.3481 0.8894 0.3246 0.2650 0.4190

SV-N 0.9202 0.0695 0.1257 0.0812 0.1940 0.7007 0.2725 0.2157 0.2999

SV-T 0.5707 0.0504 0.0886 0.0535 0.1379 0.5877 0.2329 0.1828 0.2683

N
=

1
0
0
0

GARCH-N 2.3598 0.1754 0.2641 0.1874 0.6468 1.2409 0.4237 0.3575 0.5955

GARCH-T 2.4155 0.1828 0.2745 0.1940 0.6760 1.2714 0.4337 0.3663 0.6133

GAS-N ¿ 10 0.4004 0.4537 0.5307 6.7466 1.9746 0.5362 0.4885 0.9334

GAS-T 0.6289 0.0565 0.0965 0.0587 0.1597 0.6332 0.2473 0.1955 0.2956

MS-N 1.3620 0.1172 0.1839 0.1195 0.3989 0.9275 0.3420 0.2782 0.4506

MS-T 1.2798 0.1058 0.1677 0.1103 0.3529 0.8911 0.3264 0.2663 0.4247

SV-N 1.0067 0.0784 0.1337 0.0878 0.2468 0.7289 0.2771 0.2219 0.3210

SV-T 0.5215 0.0463 0.0816 0.0491 0.1245 0.5656 0.2244 0.1760 0.2573

N
=

2
5
0
0

GARCH-N 2.3625 0.1828 0.2751 0.1924 0.6745 1.2698 0.4357 0.3671 0.6160

GARCH-T 2.4527 0.1899 0.2848 0.1998 0.7046 1.3023 0.4450 0.3758 0.6327

GAS-N 8.1638 0.4008 0.5167 0.4575 2.2197 2.0234 0.5905 0.5340 0.9894

GAS-T 0.5982 0.0553 0.0944 0.0567 0.1563 0.6225 0.2445 0.1928 0.2920

MS-N 1.5132 0.1330 0.2056 0.1336 0.4676 0.9959 0.3649 0.2980 0.4922

MS-T 1.3460 0.1144 0.1796 0.1174 0.3907 0.9322 0.3416 0.2788 0.4504

SV-N 1.0485 0.0838 0.1396 0.0917 0.2693 0.7564 0.2848 0.2292 0.3400

SV-T 0.5036 0.0456 0.0801 0.0478 0.1235 0.5575 0.2216 0.1736 0.2547

Table 9: Forecast evaluation under contaminated series. DGP: SV with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in emerging markets 22



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
M
S
G
A
R
C
H

N
=

5
0
0

GARCH-N 0.1912 0.0959 0.1429 0.0386 0.3809 0.2621 0.2713 0.1313 0.3647

GARCH-T 0.1789 0.0997 0.1517 0.0390 0.3680 0.2726 0.2862 0.1379 0.3840

GAS-N ¿10 1.7069 0.4714 0.9703 ¿10 1.4028 0.4055 0.2584 2.1100

GAS-T 0.0316 0.0212 0.0378 0.0083 0.0551 0.1224 0.1472 0.0665 0.1652

MS-N 0.1143 0.0625 0.0947 0.0243 0.2428 0.1921 0.2115 0.0994 0.2718

MS-T 0.1218 0.0612 0.0921 0.0244 0.2422 0.1918 0.2081 0.0984 0.2670

SV-N 0.0457 0.0316 0.0572 0.0123 0.0851 0.1357 0.1725 0.0757 0.1814

SV-T 0.0296 0.0204 0.0369 0.0079 0.0531 0.1092 0.1368 0.0606 0.1463

N
=

1
0
0
0

GARCH-N 0.1700 0.0980 0.1489 0.0381 0.3568 0.2653 0.2774 0.1340 0.3742

GARCH-T 0.1550 0.0962 0.1500 0.0368 0.3275 0.2704 0.2890 0.1383 0.3841

GAS-N 3.7793 0.5344 0.5033 0.2460 8.2986 0.6975 0.4706 0.2680 1.0039

GAS-T 0.0246 0.0182 0.0326 0.0069 0.0459 0.1121 0.1371 0.0615 0.1531

MS-N 0.1083 0.0640 0.0972 0.0243 0.2418 0.1932 0.2148 0.1006 0.2780

MS-T 0.1204 0.0686 0.1032 0.0264 0.2631 0.2046 0.2232 0.1055 0.2908

SV-N 0.0420 0.0312 0.0550 0.0116 0.0863 0.1345 0.1699 0.0749 0.1842

SV-T 0.0241 0.0179 0.0325 0.0068 0.0451 0.1022 0.1286 0.0569 0.1380

N
=

2
5
0
0

GARCH-N 0.1627 0.0995 0.1525 0.0381 0.3495 0.2630 0.2763 0.1333 0.3753

GARCH-T 0.1506 0.0972 0.1526 0.0368 0.3238 0.2721 0.2926 0.1398 0.3896

GAS-N 2.6077 0.5596 0.5983 0.2486 4.9391 0.7648 0.5448 0.3080 1.1039

GAS-T 0.0223 0.0168 0.0302 0.0063 0.0418 0.1056 0.1300 0.0582 0.1451

MS-N 0.0979 0.0639 0.0997 0.0237 0.2231 0.2011 0.2296 0.1064 0.2932

MS-T 0.1238 0.0745 0.1140 0.0284 0.2703 0.2221 0.2438 0.1150 0.3178

SV-N 0.0420 0.0314 0.0549 0.0117 0.0864 0.1372 0.1714 0.0760 0.1887

SV-T 0.0237 0.0178 0.0322 0.0067 0.0450 0.1028 0.1284 0.0570 0.1394

Table 10: Forecast evaluation under contaminated series. DGP: MSGARCH with standardized

Student-t innovation distribution. Parameters values close to the ones obtained in emerging markets 23



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
R
C
H

N
=

5
0
0

GARCH-N 1.0683 0.0919 0.1420 0.0934 0.3209 0.6657 0.2707 0.2097 0.3605

GARCH-T 1.0718 0.0948 0.1445 0.0947 0.3387 0.6541 0.2645 0.2056 0.3581

GAS-N > 10 0.5513 0.4396 0.7427 > 10 1.7941 0.4144 0.3859 0.9636

GAS-T 0.1926 0.0197 0.0350 0.0198 0.0512 0.2964 0.1377 0.1002 0.1553

MS-N 0.7403 0.0672 0.1042 0.0667 0.2345 0.5161 0.2166 0.1653 0.2816

MS-T 0.7028 0.0612 0.0958 0.0620 0.2098 0.5031 0.2103 0.1608 0.2693

SV-N 0.2893 0.0311 0.0538 0.0302 0.0873 0.3450 0.1627 0.1174 0.1815

SV-T 0.1848 0.0198 0.0356 0.0196 0.0506 0.2849 0.1357 0.0975 0.1476

N
=

1
0
0
0

GARCH-N 0.9879 0.0905 0.1403 0.0900 0.3093 0.6383 0.2608 0.2019 0.3508

GARCH-T 0.9925 0.0920 0.1416 0.0908 0.3190 0.6327 0.2575 0.1998 0.3492

GAS-N > 10 0.5204 0.5124 0.6299 7.1201 1.8003 0.4716 0.4321 0.9912

GAS-T 0.1772 0.0189 0.0335 0.0186 0.0488 0.2809 0.1306 0.0950 0.1479

MS-N 0.6571 0.0638 0.1002 0.0621 0.2140 0.4990 0.2128 0.1614 0.2757

MS-T 0.7404 0.0685 0.1069 0.0677 0.2348 0.5282 0.2217 0.1693 0.2887

SV-N 0.2807 0.0306 0.0527 0.0295 0.0854 0.3433 0.1615 0.1167 0.1826

SV-T 0.2111 0.0228 0.0402 0.0223 0.0603 0.2974 0.1405 0.1013 0.1561

N
=

2
5
0
0

GARCH-N 0.9891 0.0925 0.1431 0.0913 0.3159 0.6334 0.2579 0.2001 0.3503

GARCH-T 0.9898 0.0936 0.1444 0.0919 0.3220 0.6328 0.2578 0.2000 0.3513

GAS-N > 10 0.5666 0.5944 0.6420 5.2625 1.9374 0.5267 0.4822 1.0928

GAS-T 0.1752 0.0189 0.0334 0.0185 0.0488 0.2723 0.1268 0.0922 0.1445

MS-N 0.7056 0.0693 0.1091 0.0673 0.2294 0.5264 0.2235 0.1699 0.2924

MS-T 0.8006 0.0765 0.1196 0.0749 0.2577 0.5605 0.2336 0.1792 0.3093

SV-N 0.2854 0.0314 0.0538 0.0301 0.0884 0.3482 0.1629 0.1180 0.1868

SV-T 0.2437 0.0268 0.0466 0.0258 0.0729 0.3215 0.1508 0.1092 0.1712

Table 11: Forecast evaluation under contaminated series. DGP: GARCH with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in developed markets 24



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
G
A
S

N
=

5
0
0

GARCH-N 1.0568 0.0988 0.1511 0.0936 0.3623 0.6491 0.2827 0.2107 0.3801

GARCH-T 1.0268 0.1024 0.1564 0.0951 0.3655 0.6464 0.2808 0.2099 0.3824

GAS-N > 10 0.9756 0.4697 1.1284 > 10 2.1705 0.4428 0.4002 1.4168

GAS-T 0.1729 0.0210 0.0365 0.0189 0.0564 0.2679 0.1355 0.0943 0.1557

MS-N 0.5787 0.0613 0.0956 0.0553 0.2185 0.4579 0.2144 0.1545 0.2746

MS-T 0.6544 0.0586 0.0912 0.0558 0.2070 0.4538 0.2080 0.1511 0.2655

SV-N 0.2208 0.0295 0.0516 0.0258 0.0812 0.3183 0.1684 0.1146 0.1855

SV-T 0.1554 0.0210 0.0370 0.0183 0.0563 0.2607 0.1378 0.0939 0.1521

N
=

1
0
0
0

GARCH-N 1.0954 0.1080 0.1641 0.1004 0.3882 0.6671 0.2876 0.2157 0.3951

GARCH-T 1.0536 0.1073 0.1632 0.0986 0.3819 0.6564 0.2838 0.2127 0.3908

GAS-N > 10 0.8242 0.6147 0.9185 > 10 2.1632 0.5295 0.4797 1.3530

GAS-T 0.1561 0.0197 0.0343 0.0176 0.0525 0.2472 0.1259 0.0874 0.1453

MS-N 0.5677 0.0640 0.1011 0.0568 0.2165 0.4699 0.2210 0.1590 0.2844

MS-T 0.5654 0.0604 0.0963 0.0551 0.1962 0.4637 0.2159 0.1561 0.2754

SV-N 0.2338 0.0321 0.0548 0.0274 0.0912 0.3244 0.1693 0.1160 0.1922

SV-T 0.1723 0.0240 0.0416 0.0205 0.0658 0.2731 0.1431 0.0980 0.1615

N
=

2
5
0
0

GARCH-N 1.0651 0.1107 0.1680 0.1011 0.3961 0.6648 0.2868 0.2153 0.3974

GARCH-T 1.0506 0.1108 0.1680 0.1007 0.3963 0.6616 0.2859 0.2145 0.3966

GAS-N > 10 0.8064 0.7435 0.8791 > 10 2.2819 0.5954 0.5434 1.4013

GAS-T 0.1492 0.0198 0.0344 0.0173 0.0526 0.2378 0.1215 0.0842 0.1412

MS-N 0.6244 0.0732 0.1151 0.0641 0.2443 0.5057 0.2365 0.1708 0.3094

MS-T 0.6361 0.0697 0.1101 0.0629 0.2299 0.4970 0.2285 0.1664 0.2979

SV-N 0.2392 0.0340 0.0574 0.0285 0.0980 0.3277 0.1703 0.1170 0.1970

SV-T 0.1910 0.0275 0.0470 0.0231 0.0767 0.2904 0.1519 0.1041 0.1740

Table 12: Forecast evaluation under contaminated series. DGP: GAS with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in developed markets 25



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
S
V

N
=

5
0
0

GARCH-N 1.7035 0.2143 0.3061 0.1660 0.9247 0.9706 0.4411 0.3206 0.6421

GARCH-T 2.1332 0.2660 0.3613 0.2026 1.2964 1.0746 0.4723 0.3489 0.7283

GAS-N > 10 0.9192 0.5236 1.5360 > 10 2.6725 0.5231 0.4422 1.4309

GAS-T 0.5958 0.1019 0.1640 0.0736 0.3384 0.6164 0.3212 0.2192 0.4058

MS-N 1.0378 0.1570 0.2325 0.1140 0.6370 0.7631 0.3749 0.2629 0.5169

MS-T 1.0500 0.1541 0.2307 0.1142 0.6040 0.7766 0.3782 0.2663 0.5175

SV-N 0.6464 0.0878 0.1598 0.0758 0.2644 0.5870 0.3105 0.2102 0.3329

SV-T 0.5342 0.0863 0.1468 0.0658 0.2703 0.5650 0.3007 0.2031 0.3531

N
=

1
0
0
0

GARCH-N 1.8119 0.2300 0.3218 0.1767 1.0447 0.9958 0.4460 0.3266 0.6635

GARCH-T 2.1239 0.2630 0.3589 0.2023 1.2628 1.0774 0.4701 0.3485 0.7227

GAS-N > 10 0.6912 0.5914 0.7223 > 10 1.8911 0.5569 0.4632 1.2376

GAS-T 0.5854 0.0999 0.1613 0.0723 0.3299 0.6105 0.3185 0.2172 0.4013

MS-N 1.0032 0.1575 0.2342 0.1135 0.6250 0.7655 0.3774 0.2644 0.5198

MS-T 1.0130 0.1561 0.2305 0.1130 0.6436 0.7684 0.3756 0.2642 0.5178

SV-N 0.6907 0.0945 0.1666 0.0801 0.3113 0.6013 0.3139 0.2139 0.3440

SV-T 0.5127 0.0815 0.1398 0.0629 0.2508 0.5473 0.2912 0.1966 0.3394

N
=

2
5
0
0

GARCH-N 1.8262 0.2388 0.3302 0.1807 1.1230 0.9991 0.4466 0.3275 0.6738

GARCH-T 2.0609 0.2644 0.3597 0.2005 1.2920 1.0676 0.4688 0.3467 0.7230

GAS-N > 10 0.6324 0.6026 0.5729 > 10 1.7504 0.5737 0.4688 1.1966

GAS-T 0.5652 0.0992 0.1602 0.0710 0.3280 0.6071 0.3180 0.2166 0.4011

MS-N 1.1017 0.1746 0.2535 0.1242 0.7540 0.8041 0.3921 0.2763 0.5524

MS-T 0.9973 0.1607 0.2354 0.1140 0.6929 0.7713 0.3791 0.2661 0.5258

SV-N 0.6786 0.0961 0.1667 0.0795 0.3315 0.5991 0.3129 0.2132 0.3473

SV-T 0.4942 0.0801 0.1368 0.0611 0.2481 0.5396 0.2873 0.1940 0.3357

Table 13: Forecast evaluation under contaminated series. DGP: SV with standardized Student-t

innovation distribution. Parameters values close to the ones obtained in developed markets 26



Monte Carlo Simulations

Model MSE QLIKE MSEL MSESd MSEP MAE MAEL MAESd MAEP

D
G
P
:
M
S
G
A
R
C
H

N
=

5
0
0

GARCH-N 0.1129 0.3905 0.4421 0.0478 2.8826 0.1783 0.4410 0.1333 0.8227

GARCH-T 0.1088 0.3466 0.3775 0.0437 2.6597 0.1566 0.3599 0.1126 0.6975

GAS-N 5.1360 > 10 > 10 5.0656 > 10 > 10 > 10 1.2573 1.9577

GAS-T 0.0263 0.0768 0.1173 0.0114 0.2938 0.0809 0.2330 0.0650 0.2941

MS-N 0.0731 0.2190 0.2491 0.0282 1.6653 0.1164 0.2916 0.0871 0.5026

MS-T 0.0723 0.2254 0.2508 0.0285 1.7606 0.1145 0.2816 0.0850 0.5005

SV-N 0.0322 0.1360 0.2243 0.0178 0.5179 0.1155 0.3813 0.0994 0.4257

SV-T 0.0316 0.1216 0.2010 0.0167 0.4601 0.1094 0.3506 0.0928 0.3903

N
=

1
0
0
0

GARCH-N 0.1053 0.3888 0.4332 0.0466 2.8596 0.1712 0.4169 0.1272 0.7988

GARCH-T 0.1041 0.3541 0.3845 0.0436 2.7213 0.1551 0.3570 0.1119 0.7026

GAS-N 0.8070 > 10 > 10 7.8892 > 10 > 10 > 10 1.6321 3.1176

GAS-T 0.0198 0.0708 0.1098 0.0097 0.2566 0.0748 0.2274 0.0620 0.2844

MS-N 0.0626 0.2200 0.2433 0.0266 1.7278 0.1058 0.2662 0.0797 0.4815

MS-T 0.0667 0.2379 0.2616 0.0285 1.8585 0.1078 0.2673 0.0806 0.5032

SV-N 0.0301 0.1376 0.2258 0.0174 0.5189 0.1146 0.3823 0.0993 0.4315

SV-T 0.0296 0.1333 0.2177 0.0169 0.5047 0.1123 0.3710 0.0969 0.4210

N
=

2
5
0
0

GARCH-N 0.1063 0.3931 0.4326 0.0471 2.9347 0.1697 0.4039 0.1247 0.7905

GARCH-T 0.1058 0.3649 0.3934 0.0446 2.8559 0.1571 0.3591 0.1130 0.7154

GAS-N 1.5851 > 10 > 10 > 10 > 10 > 10 > 10 2.0218 4.2721

GAS-T 0.0186 0.0683 0.1061 0.0093 0.2455 0.0732 0.2254 0.0612 0.2811

MS-N 0.0656 0.2273 0.2473 0.0274 1.8238 0.1012 0.2531 0.0760 0.4766

MS-T 0.0681 0.2443 0.2663 0.0290 1.9376 0.1032 0.2566 0.0774 0.5000

SV-N 0.0300 0.1400 0.2283 0.0175 0.5321 0.1148 0.3840 0.0997 0.4371

SV-T 0.0296 0.1384 0.2258 0.0173 0.5237 0.1140 0.3812 0.0990 0.4340

Table 14: Forecast evaluation under contaminated series. DGP: MSGARCH with standardized

Student-t innovation distribution. Parameters values close to the ones obtained in developed markets 27



Empirical Application



Empirical Application

• The previously mentioned volatility models were applied to the daily return time series of

the constituents of the Dow Jones Industrial Average Index.

• The dataset, obtained from Economatica, spans the period from January 4, 2010, to

December 31, 2024, comprising a total of 3,774 observations.

• Only time series without missing values over the considered period were analyzed,

resulting in a final sample of 29 stocks.

• Volatility forecasting performance for each series was assessed using a rolling window

scheme with a window size of 2,500 and 1,000 observations.

• For these series, realized volatility measures were freely obtained from

capire.stat.unipd.it and uses as a benchmark.

• Only the MSE and QLIKE are implemented, as they are the only loss functions considered

robust in the sense of Patton (2011).

• The Model Confidence Set of Hansen et al. (2011) was used to select the best set of

models
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Empirical Application

Min Q1 Med Mean Q3 Max Skew Kurt Sd ACF1

MMM -12.9450 -0.5931 0.0540 0.0394 0.7338 22.9906 0.6217 26.4331 1.4631 -0.0438

AMZN -14.0494 -0.9025 0.0938 0.1136 1.1906 15.7457 0.2606 9.2383 2.0610 -0.0190

AXP -14.8187 -0.7041 0.0777 0.0751 0.9279 21.8823 0.8175 22.6249 1.8245 -0.0533

AMGN -9.5846 -0.7233 0.0317 0.0614 0.8461 11.8180 0.3778 8.8610 1.5232 -0.0755

AAPL -12.8647 -0.7397 0.1004 0.1129 1.0357 11.9808 -0.0434 8.1919 1.7551 -0.0400

BA -23.8484 -0.9198 0.0679 0.0635 1.0459 24.3186 0.1755 21.1000 2.2543 0.0540

CAT -14.2822 -0.8497 0.0590 0.0760 1.0278 10.3321 -0.1333 6.7862 1.8298 0.0033

CVX -22.1248 -0.7318 0.0703 0.0468 0.8295 22.7407 -0.2220 26.8621 1.6872 -0.0671

CSCO -16.2107 -0.6509 0.0520 0.0481 0.7960 15.9505 -0.4466 18.6962 1.6295 -0.0638

KO -9.6725 -0.4607 0.0566 0.0388 0.5729 6.4796 -0.6067 11.8785 1.0721 -0.0340

HD -19.7938 -0.5921 0.0940 0.0891 0.8301 13.7508 -0.6515 18.0384 1.4627 -0.0424

HON -12.0868 -0.6024 0.0713 0.0655 0.7542 15.0684 0.0125 12.3544 1.4405 -0.0309

INTC -26.0585 -0.9213 0.0566 0.0320 1.0257 19.5213 -0.7099 18.7537 2.0229 -0.0703

IBM -12.8507 -0.6128 0.0556 0.0376 0.7120 11.3010 -0.4608 12.7177 1.4006 -0.0331

JNJ -10.0379 -0.4471 0.0312 0.0386 0.5695 7.9977 -0.1134 12.0442 1.0521 -0.0681

JPM -14.9649 -0.7608 0.0586 0.0719 0.9074 18.0125 0.2216 12.8850 1.7483 -0.0978

MCD -15.8753 -0.4841 0.0750 0.0585 0.6014 18.1255 0.3910 33.9165 1.1706 -0.1008

MRK -9.8630 -0.6197 0.0310 0.0484 0.7436 10.4080 -0.0100 9.6857 1.3077 -0.0638

MSFT -14.7390 -0.7078 0.0698 0.0900 0.9262 14.2169 0.0265 10.6409 1.6110 -0.1046

NKE -19.9809 -0.7633 0.0508 0.0607 0.9280 15.5314 0.0250 17.1611 1.7571 -0.0378

PG -8.7373 -0.4713 0.0568 0.0444 0.5846 12.0090 0.1688 14.9902 1.0764 -0.0766

GS -12.7910 -0.8520 0.0549 0.0555 0.9845 17.5803 0.0073 11.5460 1.8007 -0.0649

TRV -20.8004 -0.5772 0.1044 0.0612 0.7408 13.2902 -1.1312 25.3817 1.4064 -0.1548

UNH -17.2769 -0.6889 0.0957 0.0932 0.8602 12.7989 -0.0642 12.5191 1.6006 -0.0654

VZ -7.4978 -0.5835 0.0495 0.0317 0.6449 9.2705 0.0711 8.3111 1.1627 -0.0359

V -13.5472 -0.6974 0.1312 0.0861 0.8665 14.9973 0.1765 13.3194 1.5741 -0.0965

WMT -11.3758 -0.5144 0.0682 0.0589 0.6375 11.7085 0.1154 18.9946 1.2087 -0.0578

DIS -13.1632 -0.6788 0.0445 0.0503 0.8230 14.4123 0.2035 13.5132 1.6423 -0.0512

CRM -19.7371 -0.9626 0.0860 0.1029 1.1906 26.0449 0.4990 14.0377 2.2822 -0.0275

Table 15: Descriptive statistics in the full sample period
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Empirical Application

Figure 2: Out-of-sample average MSE (left panel) and QLIKE (right panel) forecasting performance of

assets in the Dow Jones Average Index 30



Empirical Application

Figure 3: Out-of-sample average MSE (left panel) and QLIKE (right panel) forecasting performance of

assets in the Dow Jones Average Index. Sample size 1000 observations
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Takeaways

• For series contaminated by outliers, the SV-t and GAS-t models outperform their

competitors.

• Even when the true DGP has two regimes, a very large sample size is required for the

MSGARCH model to emerge as a competitive alternative.

• Since volatility is relevant beyond finance, researchers and practitioners in other fields

(such as those working on wind speed, electricity demand, temperature variability, and

others) can also benefit from these findings.

• GAS-t and SV-t should serve as new benchmarks for developing robust-to-outliers

procedures.

• This work highlights that a deep understanding of the models is more important than

simply running “horse races” or relying on computational power, underscoring the crucial

role of well-trained specialists in statistics and data science over untrained users.
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