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Introduction



Introduction

• The conditional covariance matrix (Σt) is an input parameter for several economic and

financial applications.

• Σt evolves over time.

• In the multivariate setting, MGARCH models are widely used in the literature.

• Although MGARCH models are useful for predicting conditional covariance matrices in

small to moderate dimensions, they are severely affected by the “curse of dimensionality.”

• To address these issues, alternative procedures for estimating the conditional covariance

matrix in high-dimensional settings have been proposed, such as:

• Composite likelihood

• Shrinkage

• Non-parametric approaches

• Dimension reduction techniques
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Introduction

Dimension reduction techniques to forecast the conditional covariance matrix:

• Principal components analysis (PCA),

• Independent component analysis (ICA),

• Conditionally uncorrelated components (CUC),

• Dynamic orthogonal components (DOC),

• Principal volatility components (PVC), etc.

However, most dimension reduction techniques are based on a static approach which is not

optimal in a time series context (Hallin et al., 2018).
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The general dynamic factor

model



General dynamic factor model

GDFM

Flexivel, general and based on representation results.

• Sucessfully applied in several fields.

• Proposed in the early 2000s.

• N and T → ∞
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General dynamic factor model

Let Xt = (X1t X2t . . . Xnt)
′, t = 1, ... denotea double-indexed stationary stochastic process

with zero mean and finite second order moments. The GDFM is based on the decomposition

Xit = χit + ξit (1)

χit = bi1(L)u1t + . . .+ biq(L)uqt , i ∈ N, t ∈ Z, (2)

where L stands for a lag operator and the unobservable ui,t , χi,t and ξi,t , stand for the

common shocks, common components and idiosyncratic components, respectively.
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General dynamic factor model

Under the assumption that the space spanned by the common components is

finite-dimensional, the decomposition (1) takes the static form

Xit = λi1F1t + . . .+ λirFrt︸ ︷︷ ︸
χit

+ξit , r ≥ q (3)

However, this assumption rules out simple factor-loading patterns (Forni and Lippi, 2011; Forni

et al., 2015, 2017) such as

Xi,t =

χit︷ ︸︸ ︷
ai (1− αiL)

−1ut︸ ︷︷ ︸
ai (ut+αiut−1+α2

i ut−2+α3
i ut−3+...)

+ξit . (4)
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General dynamic factor model

• Forni et al. (2000) proposed a procedure that does not assume that the space spanned by

the common components is finite-dimensional. However, is based on a two-sided filter,

which is not satisfactory for forecasting.

• Forni et al. (2005) proposed a procedure which allows for one-sided filter estimation.

However, assume finite-dimensional factor space.

• Forni et al. (2015, 2017) proposed a procedure which allows one-sided filter estimation

and infinite-dimensional factor space.

• Trućıos et al. (2023) and Hallin and Trućıos (2023) extend the procedure to allow for the

estimation of the conditional covariance matrix.
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Conditional covariance matrix

Forni et al. (2015, 2017) show that, χt = (χ1t χ2t . . . χnt)
′ admits a block-structure

autoregressive representation

A(L)χt = Rut . (5)

where

A(L) =


A1(L) 0 . . . 0

0 A2(L) . . . 0
...

...
. . . 0

0 0 . . . Am(L)

 and R =


R1

R2

...

Rm


with Ak(L) being a (q + 1)× (q + 1) polynomial matrix with finite degree and Rk a

(q + 1)× q matrix, n = m(q + 1).

8



Conditional covariance matrix

Under assumptions in Barigozzi and Hallin (2020) and additionally assuming that ut and ξt are

conditionally uncorrelated for any lead and lag, Trućıos et al. (2023) show that the conditional

variance-covariance matrix of Xt is given by

V (Xt |Ft−1) = R V (ut |Ft−1)R
′ + V (ξt |Ft−1). (6)

• ut ∼ MGARCH.

• The conditional covariance matrix of the idiosyncratic factors can be modelled as a full or

diagonal matrix, where each conditional variance is modelled independently by a

GARCH-type model.
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Estimation

• Step 1. Determine the number q of common shocks via an information criterion, for

instance, using Hallin and Lǐska (2007).

• Step 2. Randomly reorder the n observed series.

• Step 3. Estimate the spectral density matrix of X by

Σ̂X
nT (θ) =

1

2π

MT∑
k=−MT

e−ikθ K

(
k

BT

)
︸ ︷︷ ︸

1−
|k|

[|
√
T |] + 1

Γ̂X
k θ ∈ [0, 2π] (7)

where K (·) is a kernel function, MT a truncation parameter, BT a bandwidth, and Γ̂X
k the

sample lag-k cross-covariance matrix.
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Estimation

• Step 4. Estimate the spectral density matrix of the common components by

Σ̂χ
nT (θ) := P̂X

nT (θ)Λ̂
X
nT (θ)P̂

X∗
nT (θ) θ ∈ [0, 2π]

where Λ̂X
nT (θ) is a q × q diagonal matrix with diagonal elements the q largest eigenvalues

of Σ̂X
nT (θ) and P̂X

nT (θ) (with complex conjugate P̂X∗
nT ) is the n × q matrix with the

associated eigenvectors.
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Estimation

• Step 5. By inverse Fourier transform of Σ̂χ
n∗T (θ), estimate the autocovariance matrices

Γ̂χ
k of the m sub-vectors

χk
t = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)

′, k = 1, ...,m

of dimension (q + 1). Based on these, compute, after order identification, the Yule-Walker

estimators Â
k
(L) of the m VAR filters Ak(L) and stack them into a block-diagonal matrix

Ân∗(L). Compute Ân∗(L)Xn∗t = Ŷn∗t = R̂n∗ ût + ε̂t

• Step 6. Based on the first q standard principal components of Ŷn∗t , obtain estimates

R̂n∗ut of Rn∗ut and, via a Cholesky identification constraint the estimates R̂n∗ and ût of

Rn∗ and ut ; then, an estimate of the impulse-response function is

B̂n∗(L) := [Ân∗(L)]
−1R̂n∗ .
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Estimation

• Step 7. Repeat Steps 2 through 7 M times: the final estimates (denoted as R̂n, ût , and

B̂n) are obtained by averaging the estimates R̂n∗ , ût , and B̂n∗ associated with each

iteration. Let χ̂nt := B̂n(L)ût and ξ̂nt := Xnt − χ̂nt .

• Step 8. The estimator of V(Xt |Ft−1) is given by

V̂(Xt |Ft−1) := R̂V̂(ût |Ft−1)R̂
′
+ V̂(ξ̂t |Ft−1). (8)

New idea:

Can we do better? What happends if we replace the PCA in Step 6 with a

dimension-reduction technique designed specifically to extract volatility components?
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Principal Volatility Components



Principal Volatility Components (PVC)

Similar to PCA.

• Hu, Y. P., & Tsay, R. S. (2014). Principal volatility component analysis. Journal of

Business & Economic Statistics, 32(2), 153-164.

• Li, W., Gao, J., Li, K., & Yao, Q. (2016). Modeling multivariate volatilities via latent

common factors. Journal of Business & Economic Statistics, 34(4), 564-573.
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Principal Volatility Components (PVC)

PVC is based on a similar idea that PCA.

• PCA decomposes a N-dimensional vector into N contemporaneous uncorrelated components

according with the amount of variability explained by the components.

• PCA uses the sample covariance matrix.

• Hu and Tsay (2014) and Li et al. (2016) proposed PVC: A generalization of PCA that takes into

account the dynamic dependence between the volatility processes.

• In PVC the covariance matrix is replaced by a matrix that summarizes the dynamic dependence of

volatilities.

• With PVC we identify common volatility components and also components with no conditional

heteroscedasticity.
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Principal Volatility Components (PVC)

Let the Cumulative Generalized Kurtosis Matrix defined by

Γ∞ =
∞∑
ℓ=1

k∑
i=1

m∑
j=1

E [(y ′
tyt − E (y ′

tyt)) (xij,t−ℓ − E (xij,t))] , (9)

where xij,t−k is a function of the cross product yi,t−k and yj,t−k

Additionally,

Γ∞M = MΛ, where

• M = [m1, ...,mk ] is the matrix of normalized eigenvectors and

• Λ is the diagonal matrix of ordered eigenvalues,
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Principal Volatility Components (PVC)

Hu and Tsay (2014) proves that, under mild conditions, there exist r linear combination of yt
that have ARCH effects and k − r linear combination of yt that have no ARCH effects if and

only if rank (Γ∞) = r .

The v -th PVC is defined as

zvt = m′
vyt

• zvt , zut are (contemporaneously) uncorrelated if λ2
v ̸= λ2

u.

• zvt may still be correlated with lagged values of zut .
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Principal Volatility Components (PVC)

Li et al. (2016) proposed an alternative PVC characterized only by the second moment. In this

approach, the matrix Γ∞ is replaced by

G =

g∑
k=1

T∑
t=1

ω(yt)E
2 [(yty

′
t − Σ) I (∥yt−k∥ ≤ ∥yt∥)] , (10)

where ω(·) is a weight function and ∥ · ∥ is the L1 norm.

The alternative procedure has the same properties of the proposal of Hu and Tsay (2014) but

only requires finite second-order moments.
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Principal Volatility Components

In practice, the matrix G is estimated in a natural way by

Ĝ =

g∑
k=1

T∑
τ=1

ω(yτ )

[
1

T − k

T∑
t=k+1

[(
yty

′
t − Σ̂

)
I (∥yt−k∥ ≤ ∥yτ∥)

]]2

.

Thus, we use PVC instead PCA in Step 6 and the estimator of V(Xt |Ft−1) is given by

V̂(Xt |Ft−1) := R̂︸︷︷︸
GPVC

V̂(ût |Ft−1)︸ ︷︷ ︸
MGARCH

R̂
′︸︷︷︸

GPVC

+ V̂(ξ̂t |Ft−1)︸ ︷︷ ︸
Has constant conditional variance

(11)
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Empirical Application



Empirical Applications

• Minimum Variance Portfolios

• Universe: 534 stocks traded on the NYSE.

• Sample period: January 2, 2010, through December 31, 2024 (T = 3774 trading days).

• Rolling Window Scheme: Estimation window of 1,250 days.

• Out-of-sample period: 2,524 days.

• Daily portfolio rebalancing.
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Empirical Application

At time t = 1250, . . . , 3774 the one-step ahead conditional covariance matrix is estimated and

used to obtain the optimal portfolio allocation weights, that is, minimise

ω′Σ̂T+1|Tω,

subject to ωi ≥ 0 and
∑n

i=1 ωi = 1.

Then, the resulting (out-of-sample) portfolio return is given by

Rp,T+1 :=
n∑

i=1

ω̂i ;T+1|T × ri,T+1
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Empirical Application

• Annualized average portfolio (AV): is given by
√
12× R̄p, where R̄p is the sample mean of the

realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.

• Annualized standard deviation (SD): is given by
√
12× σ̂p, where σ̂p is the sample standard

deviation of the realized out-of-sample portfolio returns. The smaller the SD, the less risky the

portfolio and, consequently, the better the portfolio performance.

• Annualized Sharpe ratio (SR): is given by
√
12× SR, where SR is the Sharpe ratio, a

risk-adjusted performance measure defined by SR = R̄p − R̄f

/
σ̂p−f , where R̄f is the average

risk-free rate. The higher the annualized SR, the better the portfolio performance.

• Annualized adjusted Sharpe ratio (ASR): is given by
√
12× ASR, where ASR is the adjusted

Sharpe ratio which is defined by ASR = SR
[
1+

(
µ3
6

)
SR −

(µ4 − 3

24

)
SR2

]
, where µ3 and µ4 stand

for the skewness and kurtosis of the out-of-sample portfolio returns. The higher the ASR, the

better the portfolio performance.

• Annualized Sortino ratio (SO): is given by
√
12× SO, where SO is the Sortino ratio which is

defined by SO = R̄p

/√
semi-variance. The higher the SO, the better the portfolio performance.
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Empirical Application

Since the GDFM-CHF proposed by Trućıos et al. (2023) has proven to be quite competitive,

we compare our new proposal only with GDFM-CHF (which applies PCA to the static

representation)

Table 1: Out-of-sample performance measures of the minimum variance portfolio with short-selling

constraints: AV, SD, SR, ASR, and SO, stand for the average, standard deviation, Sharpe ratio,

Adjusted Sharpe ratio, and Sortino ratio, respectively.

AV SD SR ASR SO

GDFM-CHF 0.2720 2.6871 0.1012 0.1006 0.1513

GDFM-GPVC 0.3391 2.6718 0.1269 0.1258 0.1895
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Conclusion

• Building on previous results based on the GDFM (Trućıos et al., 2023) and PVC (?), we

propose a new procedure to forecast the conditional covariance matrix in large portfolios.

• The new procedure does not require estimating the conditional covariance matrix of the

idiosyncratic components using a conditional heteroscedastic method, as they have

constant conditional variance.

• The new procedure delivers encouraging results, being competitive with the GDFM-CHF.

• Further empirical applications and theoretical results are in progress.
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