A novel approach for forecasting high-dimensional conditional covariance matrices using general dynamic factor models

Carlos Trucíos

Department of Statistics, Universidade Estadual de Campinas (UNICAMP)

65th ISI World Statistics Congress The Hague, 2025.

Table of contents

- 1. Introduction
- The general dynamic factor model Conditional covariance matrix
 Estimation
- 3. Principal Volatility Components
- 4. Empirical Application

• The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."
- To address these issues, alternative procedures for estimating the conditional covariance matrix in high-dimensional settings have been proposed, such as:

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."
- To address these issues, alternative procedures for estimating the conditional covariance matrix in high-dimensional settings have been proposed, such as:
 - Composite likelihood

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."
- To address these issues, alternative procedures for estimating the conditional covariance matrix in high-dimensional settings have been proposed, such as:
 - Composite likelihood
 - Shrinkage

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."
- To address these issues, alternative procedures for estimating the conditional covariance matrix in high-dimensional settings have been proposed, such as:
 - Composite likelihood
 - Shrinkage
 - Non-parametric approaches

- The conditional covariance matrix (Σ_t) is an input parameter for several economic and financial applications.
- Σ_t evolves over time.
- In the multivariate setting, MGARCH models are widely used in the literature.
- Although MGARCH models are useful for predicting conditional covariance matrices in small to moderate dimensions, they are severely affected by the "curse of dimensionality."
- To address these issues, alternative procedures for estimating the conditional covariance matrix in high-dimensional settings have been proposed, such as:
 - Composite likelihood
 - Shrinkage
 - Non-parametric approaches
 - Dimension reduction techniques

Dimension reduction techniques to forecast the conditional covariance matrix:

- Principal components analysis (PCA),
- Independent component analysis (ICA),
- Conditionally uncorrelated components (CUC),
- Dynamic orthogonal components (DOC),
- Principal volatility components (PVC), etc.

However, most dimension reduction techniques are based on a static approach which is not optimal in a time series context (Hallin et al., 2018).

The general dynamic factor

model

GDFM

Flexivel, general and based on representation results.

GDFM

Flexivel, general and based on representation results.

- Sucessfully applied in several fields.
- Proposed in the early 2000s.
- ullet N and $T o \infty$

Let $\mathbf{X}_t = (X_{1t} \ X_{2t} \dots \ X_{nt})'$, $t = 1, \dots$ denote double-indexed stationary stochastic process with zero mean and finite second order moments. The GDFM is based on the decomposition

$$X_{it} = \chi_{it} + \xi_{it} \tag{1}$$

$$\chi_{it} = b_{i1}(L)u_{1t} + \ldots + b_{iq}(L)u_{qt}, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},$$
 (2)

where L stands for a lag operator and the unobservable $u_{i,t}$, $\chi_{i,t}$ and $\xi_{i,t}$, stand for the common shocks, common components and idiosyncratic components, respectively.

Under the assumption that the space spanned by the common components is finite-dimensional, the decomposition (1) takes the static form

$$X_{it} = \underbrace{\lambda_{i1}F_{1t} + \ldots + \lambda_{ir}F_{rt}}_{\chi_{it}} + \xi_{it}, \quad r \ge q$$
(3)

However, this assumption rules out simple factor-loading patterns (Forni and Lippi, 2011; Forni et al., 2015, 2017) such as

$$X_{i,t} = \underbrace{\underbrace{a_i(1 - \alpha_i L)^{-1} u_t}_{a_i(u_t + \alpha_i u_{t-1} + \alpha_i^2 u_{t-2} + \alpha_i^3 u_{t-3} + \dots)}}_{\chi_{i,t}} + \xi_{it}.$$
 (4)

• Forni et al. (2000) proposed a procedure that does not assume that the space spanned by the common components is finite-dimensional. However, is based on a **two-sided filter**, which is not satisfactory for forecasting.

- Forni et al. (2000) proposed a procedure that does not assume that the space spanned by the common components is finite-dimensional. However, is based on a **two-sided filter**, which is not satisfactory for forecasting.
- Forni et al. (2005) proposed a procedure which allows for one-sided filter estimation. However, assume **finite-dimensional** factor space.

- Forni et al. (2000) proposed a procedure that does not assume that the space spanned by the common components is finite-dimensional. However, is based on a **two-sided filter**, which is not satisfactory for forecasting.
- Forni et al. (2005) proposed a procedure which allows for one-sided filter estimation. However, assume **finite-dimensional** factor space.
- Forni et al. (2015, 2017) proposed a procedure which allows **one-sided** filter estimation and **infinite-dimensional** factor space.

- Forni et al. (2000) proposed a procedure that does not assume that the space spanned by the common components is finite-dimensional. However, is based on a **two-sided filter**, which is not satisfactory for forecasting.
- Forni et al. (2005) proposed a procedure which allows for one-sided filter estimation. However, assume **finite-dimensional** factor space.
- Forni et al. (2015, 2017) proposed a procedure which allows **one-sided** filter estimation and **infinite-dimensional** factor space.
- Trucíos et al. (2023) and Hallin and Trucíos (2023) extend the procedure to allow for the estimation of the **conditional covariance matrix**.

Forni et al. (2015, 2017) show that, $\chi_t = (\chi_{1t} \ \chi_{2t} \dots \chi_{nt})'$ admits a block-structure autoregressive representation

$$\mathbf{A}(L)\chi_t = \mathbf{R}u_t. \tag{5}$$

where

$$\mathbf{A}(L) = \begin{bmatrix} \mathbf{A}^{1}(L) & 0 & \dots & 0 \\ 0 & \mathbf{A}^{2}(L) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \mathbf{A}^{m}(L) \end{bmatrix} \text{ and } \mathbf{R} = \begin{bmatrix} \mathbf{R}^{1} \\ \mathbf{R}^{2} \\ \vdots \\ \mathbf{R}^{m} \end{bmatrix}$$

with $A^k(L)$ being a $(q+1) \times (q+1)$ polynomial matrix with finite degree and R^k a $(q+1) \times q$ matrix, n = m(q+1).

Under assumptions in Barigozzi and Hallin (2020) and additionally assuming that u_t and ξ_t are conditionally uncorrelated for any lead and lag, Trucíos et al. (2023) show that the conditional variance-covariance matrix of \mathbf{X}_t is given by

$$V(\mathbf{X}_t|\mathcal{F}_{t-1}) = \mathbf{R} \ V(\mathbf{u}_t|\mathcal{F}_{t-1})\mathbf{R}' + V(\xi_t|\mathcal{F}_{t-1}). \tag{6}$$

Under assumptions in Barigozzi and Hallin (2020) and additionally assuming that u_t and ξ_t are conditionally uncorrelated for any lead and lag, Trucíos et al. (2023) show that the conditional variance-covariance matrix of \mathbf{X}_t is given by

$$V(\mathbf{X}_t|\mathcal{F}_{t-1}) = \mathbf{R}\ V(\mathbf{u}_t|\mathcal{F}_{t-1})\mathbf{R}' + V(\xi_t|\mathcal{F}_{t-1}). \tag{6}$$

• $u_t \sim \text{MGARCH}$.

Under assumptions in Barigozzi and Hallin (2020) and additionally assuming that u_t and ξ_t are conditionally uncorrelated for any lead and lag, Trucíos et al. (2023) show that the conditional variance-covariance matrix of \mathbf{X}_t is given by

$$V(\mathbf{X}_t|\mathcal{F}_{t-1}) = \mathbf{R}\ V(\mathbf{u}_t|\mathcal{F}_{t-1})\mathbf{R}' + V(\xi_t|\mathcal{F}_{t-1}). \tag{6}$$

- $u_t \sim \mathsf{MGARCH}$.
- The conditional covariance matrix of the idiosyncratic factors can be modelled as a full or diagonal matrix, where each conditional variance is modelled independently by a GARCH-type model.

• **Step 1.** Determine the number *q* of common shocks via an information criterion, for instance, using Hallin and Liška (2007).

- **Step 1.** Determine the number *q* of common shocks via an information criterion, for instance, using Hallin and Liška (2007).
- **Step 2.** Randomly reorder the *n* observed series.

- **Step 1.** Determine the number *q* of common shocks via an information criterion, for instance, using Hallin and Liška (2007).
- **Step 2.** Randomly reorder the *n* observed series.
- Step 3. Estimate the spectral density matrix of X by

$$\widehat{\Sigma}_{nT}^{X}(\theta) = \frac{1}{2\pi} \sum_{k=-M_{T}}^{M_{T}} e^{-ik\theta} \underbrace{\mathcal{K}\left(\frac{k}{B_{T}}\right)}_{1-\frac{|k|}{[|\sqrt{T}|]+1}} \widehat{\Gamma}_{k}^{X} \quad \theta \in [0, 2\pi]$$

$$(7)$$

where $K(\cdot)$ is a kernel function, M_T a truncation parameter, B_T a bandwidth, and $\widehat{\Gamma}_k^X$ the sample lag-k cross-covariance matrix.

• Step 4. Estimate the spectral density matrix of the common components by

$$\widehat{\boldsymbol{\Sigma}}_{nT}^{\boldsymbol{\chi}}(\boldsymbol{\theta}) \coloneqq \widehat{\boldsymbol{\mathsf{P}}}_{nT}^{\boldsymbol{\chi}}(\boldsymbol{\theta}) \widehat{\boldsymbol{\Lambda}}_{nT}^{\boldsymbol{\chi}}(\boldsymbol{\theta}) \widehat{\boldsymbol{\mathsf{P}}}_{nT}^{\boldsymbol{\chi}*}(\boldsymbol{\theta}) \quad \boldsymbol{\theta} \in [0, 2\pi]$$

where $\widehat{\Lambda}_{nT}^X(\theta)$ is a $q \times q$ diagonal matrix with diagonal elements the q largest eigenvalues of $\widehat{\Sigma}_{nT}^X(\theta)$ and $\widehat{\mathbf{P}}_{nT}^X(\theta)$ (with complex conjugate $\widehat{\mathbf{P}}_{nT}^{X*}$) is the $n \times q$ matrix with the associated eigenvectors.

• Step 5. By inverse Fourier transform of $\widehat{\Sigma}_{n^*T}^{\chi}(\theta)$, estimate the autocovariance matrices $\widehat{\Gamma}_{k}^{\chi}$ of the m sub-vectors

$$\chi_t^k = (\chi_{(k-1)(q+1)+1,t} \dots \chi_{k(q+1),t})', \quad k = 1, ..., m$$

of dimension (q+1). Based on these, compute, after order identification, the Yule-Walker estimators $\hat{\mathbf{A}}^k(L)$ of the m VAR filters $\mathbf{A}^k(L)$ and stack them into a block-diagonal matrix $\hat{\mathbf{A}}_{n^*}(L)$. Compute $\hat{\mathbf{A}}_{n^*}(L)\mathbf{X}_{n^*t}=\widehat{\mathbf{Y}}_{n^*t}=\widehat{\mathbf{R}}_{n^*}\widehat{\mathbf{u}}_t+\widehat{\varepsilon}_t$

• Step 5. By inverse Fourier transform of $\widehat{\Sigma}_{n^*T}^{\chi}(\theta)$, estimate the autocovariance matrices $\widehat{\Gamma}_k^{\chi}$ of the m sub-vectors

$$\chi_t^k = (\chi_{(k-1)(q+1)+1,t} \dots \chi_{k(q+1),t})', \quad k = 1, ..., m$$

of dimension (q+1). Based on these, compute, after order identification, the Yule-Walker estimators $\hat{\mathbf{A}}^k(L)$ of the m VAR filters $\mathbf{A}^k(L)$ and stack them into a block-diagonal matrix $\hat{\mathbf{A}}_{n^*}(L)$. Compute $\hat{\mathbf{A}}_{n^*}(L)\mathbf{X}_{n^*t}=\widehat{\mathbf{Y}}_{n^*t}=\widehat{\mathbf{R}}_{n^*}\widehat{\mathbf{u}}_t+\widehat{\varepsilon}_t$

• Step 6. Based on the first q standard principal components of $\widehat{\mathbf{Y}}_{n^*t}$, obtain estimates $\widehat{\mathbf{R}}_{n^*}\mathbf{u}_t$ of $\mathbf{R}_{n^*}\mathbf{u}_t$ and, via a Cholesky identification constraint the estimates $\widehat{\mathbf{R}}_{n^*}$ and $\widehat{\mathbf{u}}_t$ of \mathbf{R}_{n^*} and \mathbf{u}_t ; then, an estimate of the impulse-response function is $\widehat{\mathbf{B}}_{n^*}(L) := [\widehat{\mathbf{A}}_{n^*}(L)]^{-1}\widehat{\mathbf{R}}_{n^*}$.

• Step 7. Repeat Steps 2 through 7 M times: the final estimates (denoted as $\widehat{\mathbf{R}}_n$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_n$) are obtained by averaging the estimates $\widehat{\mathbf{R}}_{n^*}$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_{n^*}$ associated with each iteration. Let $\widehat{\chi}_{nt} := \widehat{\mathbf{B}}_n(L)\widehat{\mathbf{u}}_t$ and $\widehat{\boldsymbol{\xi}}_{nt} := \mathbf{X}_{nt} - \widehat{\chi}_{nt}$.

- Step 7. Repeat Steps 2 through 7 M times: the final estimates (denoted as $\widehat{\mathbf{R}}_n$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_n$) are obtained by averaging the estimates $\widehat{\mathbf{R}}_{n^*}$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_{n^*}$ associated with each iteration. Let $\widehat{\chi}_{nt} := \widehat{\mathbf{B}}_n(L)\widehat{\mathbf{u}}_t$ and $\widehat{\xi}_{nt} := \mathbf{X}_{nt} \widehat{\chi}_{nt}$.
- Step 8. The estimator of $V(\mathbf{X}_t|\mathcal{F}_{t-1})$ is given by

$$\widehat{\mathbf{V}}(\mathbf{X}_t|\mathcal{F}_{t-1}) := \widehat{\mathbf{R}}\widehat{\mathbf{V}}(\widehat{\mathbf{u}}_t|\mathcal{F}_{t-1})\widehat{\mathbf{R}}' + \widehat{\mathbf{V}}(\widehat{\xi}_t|\mathcal{F}_{t-1}). \tag{8}$$

- Step 7. Repeat Steps 2 through 7 M times: the final estimates (denoted as $\widehat{\mathbf{R}}_n$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_n$) are obtained by averaging the estimates $\widehat{\mathbf{R}}_{n^*}$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_{n^*}$ associated with each iteration. Let $\widehat{\chi}_{nt} := \widehat{\mathbf{B}}_n(L)\widehat{\mathbf{u}}_t$ and $\widehat{\xi}_{nt} := \mathbf{X}_{nt} \widehat{\chi}_{nt}$.
- Step 8. The estimator of $V(\mathbf{X}_t|\mathcal{F}_{t-1})$ is given by

$$\widehat{\mathbf{V}}(\mathbf{X}_t|\mathcal{F}_{t-1}) := \widehat{\mathbf{R}}\widehat{\mathbf{V}}(\widehat{\mathbf{u}}_t|\mathcal{F}_{t-1})\widehat{\mathbf{R}}' + \widehat{\mathbf{V}}(\widehat{\xi}_t|\mathcal{F}_{t-1}). \tag{8}$$

- Step 7. Repeat Steps 2 through 7 M times: the final estimates (denoted as $\widehat{\mathbf{R}}_n$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_n$) are obtained by averaging the estimates $\widehat{\mathbf{R}}_{n^*}$, $\widehat{\mathbf{u}}_t$, and $\widehat{\mathbf{B}}_{n^*}$ associated with each iteration. Let $\widehat{\chi}_{nt} := \widehat{\mathbf{B}}_n(L)\widehat{\mathbf{u}}_t$ and $\widehat{\boldsymbol{\xi}}_{nt} := \mathbf{X}_{nt} \widehat{\chi}_{nt}$.
- Step 8. The estimator of $V(\mathbf{X}_t|\mathcal{F}_{t-1})$ is given by

$$\widehat{\mathbf{V}}(\mathbf{X}_t|\mathcal{F}_{t-1}) := \widehat{\mathbf{R}}\widehat{\mathbf{V}}(\widehat{\mathbf{u}}_t|\mathcal{F}_{t-1})\widehat{\mathbf{R}}' + \widehat{\mathbf{V}}(\widehat{\xi}_t|\mathcal{F}_{t-1}). \tag{8}$$

New idea:

Can we do better? What happends if we replace the PCA in Step 6 with a dimension-reduction technique designed specifically to extract volatility components?

Similar to PCA.

Similar to PCA.

- Hu, Y. P., & Tsay, R. S. (2014). Principal volatility component analysis. Journal of Business & Economic Statistics, 32(2), 153-164.
- Li, W., Gao, J., Li, K., & Yao, Q. (2016). Modeling multivariate volatilities via latent common factors. Journal of Business & Economic Statistics, 34(4), 564-573.

PVC is based on a similar idea that PCA.

- PCA decomposes a *N*-dimensional vector into *N* contemporaneous uncorrelated components according with the amount of variability explained by the components.
- PCA uses the sample covariance matrix.
- Hu and Tsay (2014) and Li et al. (2016) proposed PVC: A generalization of PCA that takes into account the dynamic dependence between the volatility processes.
- In PVC the covariance matrix is replaced by a matrix that summarizes the dynamic dependence of volatilities.
- With PVC we identify common volatility components and also components with no conditional heteroscedasticity.

Let the Cumulative Generalized Kurtosis Matrix defined by

$$\Gamma_{\infty} = \sum_{\ell=1}^{\infty} \sum_{i=1}^{k} \sum_{j=1}^{m} E\left[(y'_{t}y_{t} - E(y'_{t}y_{t})) (x_{ij,t-\ell} - E(x_{ij,t})) \right], \tag{9}$$

where $x_{ij,t-k}$ is a function of the cross product $y_{i,t-k}$ and $y_{j,t-k}$

Let the Cumulative Generalized Kurtosis Matrix defined by

$$\Gamma_{\infty} = \sum_{\ell=1}^{\infty} \sum_{i=1}^{k} \sum_{j=1}^{m} E\left[(y_t' y_t - E(y_t' y_t)) (x_{ij,t-\ell} - E(x_{ij,t})) \right], \tag{9}$$

where $x_{ij,t-k}$ is a function of the cross product $y_{i,t-k}$ and $y_{j,t-k}$

Additionally,

$$\Gamma_{\infty} M = M\Lambda$$
, where

- $M = [m_1, ..., m_k]$ is the matrix of normalized eigenvectors and
- $\bullet~\Lambda$ is the diagonal matrix of ordered eigenvalues,

Hu and Tsay (2014) proves that, under mild conditions, there exist r linear combination of y_t that have ARCH effects and k-r linear combination of y_t that have no ARCH effects if and only if $rank(\Gamma_{\infty}) = r$.

Hu and Tsay (2014) proves that, under mild conditions, there exist r linear combination of y_t that have ARCH effects and k-r linear combination of y_t that have no ARCH effects if and only if $rank(\Gamma_{\infty}) = r$.

The v-th PVC is defined as

$$z_{vt} = m'_v y_t$$

Hu and Tsay (2014) proves that, under mild conditions, there exist r linear combination of y_t that have ARCH effects and k-r linear combination of y_t that have no ARCH effects if and only if $rank(\Gamma_{\infty}) = r$.

The v-th PVC is defined as

$$z_{vt} = m_v' y_t$$

- z_{vt}, z_{ut} are (contemporaneously) uncorrelated if $\lambda_v^2 \neq \lambda_u^2$.
- z_{vt} may still be correlated with lagged values of z_{ut} .

Li et al. (2016) proposed an alternative PVC characterized only by the second moment. In this approach, the matrix Γ_{∞} is replaced by

$$G = \sum_{k=1}^{g} \sum_{t=1}^{T} \omega(y_t) E^2 \left[(y_t y_t' - \Sigma) I(\|y_{t-k}\| \le \|y_t\|) \right], \tag{10}$$

where $\omega(\cdot)$ is a weight function and $\|\cdot\|$ is the L_1 norm.

Li et al. (2016) proposed an alternative PVC characterized only by the second moment. In this approach, the matrix Γ_{∞} is replaced by

$$G = \sum_{k=1}^{g} \sum_{t=1}^{T} \omega(y_t) E^2 \left[(y_t y_t' - \Sigma) I(\|y_{t-k}\| \le \|y_t\|) \right], \tag{10}$$

where $\omega(\cdot)$ is a weight function and $\|\cdot\|$ is the L_1 norm.

The alternative procedure has the same properties of the proposal of Hu and Tsay (2014) but only requires finite second-order moments.

In practice, the matrix G is estimated in a natural way by

$$\hat{G} = \sum_{k=1}^{g} \sum_{\tau=1}^{T} \omega(y_{\tau}) \left[\frac{1}{T-k} \sum_{t=k+1}^{T} \left[\left(y_{t} y_{t}' - \hat{\Sigma} \right) I(\|y_{t-k}\| \leq \|y_{\tau}\|) \right] \right]^{2}.$$

In practice, the matrix G is estimated in a natural way by

$$\hat{G} = \sum_{k=1}^{g} \sum_{\tau=1}^{T} \omega(y_{\tau}) \left[\frac{1}{T-k} \sum_{t=k+1}^{T} \left[\left(y_{t} y_{t}' - \hat{\Sigma} \right) I(\|y_{t-k}\| \leq \|y_{\tau}\|) \right] \right]^{2}.$$

Thus, we use PVC instead PCA in Step 6 and the estimator of $V(\mathbf{X}_t|\mathcal{F}_{t-1})$ is given by

$$\widehat{\mathbf{V}}(\mathbf{X}_{t}|\mathcal{F}_{t-1}) := \underbrace{\widehat{\mathbf{R}}}_{GPVC} \underbrace{\widehat{\mathbf{V}}(\widehat{\mathbf{u}}_{t}|\mathcal{F}_{t-1})}_{MGARCH} \underbrace{\widehat{\mathbf{R}}'}_{GPVC} + \underbrace{\widehat{\mathbf{V}}(\widehat{\xi}_{t}|\mathcal{F}_{t-1})}_{\text{Has constant conditional variance}}$$
(11)

• Minimum Variance Portfolios

- Minimum Variance Portfolios
- Universe: 534 stocks traded on the NYSE.

- Minimum Variance Portfolios
- Universe: 534 stocks traded on the NYSE.
- ullet Sample period: January 2, 2010, through December 31, 2024 (T=3774 trading days).

- Minimum Variance Portfolios
- Universe: 534 stocks traded on the NYSE.
- \bullet Sample period: January 2, 2010, through December 31, 2024 (T=3774 trading days).
- Rolling Window Scheme: Estimation window of 1,250 days.

- Minimum Variance Portfolios
- Universe: 534 stocks traded on the NYSE.
- \bullet Sample period: January 2, 2010, through December 31, 2024 (T=3774 trading days).
- Rolling Window Scheme: Estimation window of 1,250 days.
- Out-of-sample period: 2,524 days.

- Minimum Variance Portfolios
- Universe: 534 stocks traded on the NYSE.
- ullet Sample period: January 2, 2010, through December 31, 2024 (T=3774 trading days).
- Rolling Window Scheme: Estimation window of 1,250 days.
- Out-of-sample period: 2,524 days.
- Daily portfolio rebalancing.

At time $t = 1250, \dots, 3774$ the one-step ahead conditional covariance matrix is estimated and used to obtain the optimal portfolio allocation weights, that is, minimise

$$\omega'\widehat{\Sigma}_{T+1|T}\omega,$$

subject to $\omega_i \geq 0$ and $\sum_{i=1}^n \omega_i = 1$.

At time $t = 1250, \dots, 3774$ the one-step ahead conditional covariance matrix is estimated and used to obtain the optimal portfolio allocation weights, that is, minimise

$$\omega'\widehat{\Sigma}_{T+1|T}\omega,$$

subject to $\omega_i \geq 0$ and $\sum_{i=1}^n \omega_i = 1$.

Then, the resulting (out-of-sample) portfolio return is given by

$$R_{p,T+1} := \sum_{i=1}^{n} \widehat{\omega}_{i;T+1|T} \times r_{i,T+1}$$

• Annualized average portfolio (AV): is given by $\sqrt{12} \times \bar{R}_p$, where \bar{R}_p is the sample mean of the realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.

- Annualized average portfolio (AV): is given by $\sqrt{12} \times \bar{R}_p$, where \bar{R}_p is the sample mean of the realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.
- Annualized standard deviation (SD): is given by $\sqrt{12} \times \hat{\sigma}_{\rho}$, where $\hat{\sigma}_{\rho}$ is the sample standard deviation of the realized out-of-sample portfolio returns. The smaller the SD, the less risky the portfolio and, consequently, the better the portfolio performance.

- Annualized average portfolio (AV): is given by $\sqrt{12} \times \bar{R}_p$, where \bar{R}_p is the sample mean of the realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.
- Annualized standard deviation (SD): is given by $\sqrt{12} \times \hat{\sigma}_p$, where $\hat{\sigma}_p$ is the sample standard deviation of the realized out-of-sample portfolio returns. The smaller the SD, the less risky the portfolio and, consequently, the better the portfolio performance.
- Annualized Sharpe ratio (SR): is given by $\sqrt{12} \times SR$, where SR is the Sharpe ratio, a risk-adjusted performance measure defined by $SR = \bar{R}_p \bar{R}_f/\hat{\sigma}_{p-f}$, where \bar{R}_f is the average risk-free rate. The higher the annualized SR, the better the portfolio performance.

- Annualized average portfolio (AV): is given by $\sqrt{12} \times \bar{R}_p$, where \bar{R}_p is the sample mean of the realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.
- Annualized standard deviation (SD): is given by $\sqrt{12} \times \hat{\sigma}_p$, where $\hat{\sigma}_p$ is the sample standard deviation of the realized out-of-sample portfolio returns. The smaller the SD, the less risky the portfolio and, consequently, the better the portfolio performance.
- Annualized Sharpe ratio (SR): is given by $\sqrt{12} \times SR$, where SR is the Sharpe ratio, a risk-adjusted performance measure defined by $SR = \bar{R}_p \bar{R}_f / \hat{\sigma}_{p-f}$, where \bar{R}_f is the average risk-free rate. The higher the annualized SR, the better the portfolio performance.
- Annualized adjusted Sharpe ratio (ASR): is given by $\sqrt{12} \times ASR$, where ASR is the adjusted Sharpe ratio which is defined by $ASR = SR\left[1+\left(\frac{\mu_3}{6}\right)SR-\left(\frac{\mu_4-3}{24}\right)SR^2\right]$, where μ_3 and μ_4 stand for the skewness and kurtosis of the out-of-sample portfolio returns. The higher the ASR, the better the portfolio performance.

- Annualized average portfolio (AV): is given by $\sqrt{12} \times \bar{R}_p$, where \bar{R}_p is the sample mean of the realized out-of-sample portfolio returns. The larger the AV, the better the portfolio performance.
- Annualized standard deviation (SD): is given by $\sqrt{12} \times \hat{\sigma}_p$, where $\hat{\sigma}_p$ is the sample standard deviation of the realized out-of-sample portfolio returns. The smaller the SD, the less risky the portfolio and, consequently, the better the portfolio performance.
- Annualized Sharpe ratio (SR): is given by $\sqrt{12} \times SR$, where SR is the Sharpe ratio, a risk-adjusted performance measure defined by $SR = \bar{R}_p \bar{R}_f / \hat{\sigma}_{p-f}$, where \bar{R}_f is the average risk-free rate. The higher the annualized SR, the better the portfolio performance.
- Annualized adjusted Sharpe ratio (ASR): is given by $\sqrt{12} \times ASR$, where ASR is the adjusted Sharpe ratio which is defined by $ASR = SR \left[1 + \left(\frac{\mu_3}{6} \right) SR \left(\frac{\mu_4 3}{24} \right) SR^2 \right]$, where μ_3 and μ_4 stand for the skewness and kurtosis of the out-of-sample portfolio returns. The higher the ASR, the better the portfolio performance.
- Annualized Sortino ratio (SO): is given by $\sqrt{12} \times SO$, where SO is the Sortino ratio which is defined by $SO = \bar{R}_p / \sqrt{\text{semi-variance}}$. The higher the SO, the better the portfolio performance.

Since the GDFM-CHF proposed by Trucíos et al. (2023) has proven to be quite competitive, we compare our new proposal only with GDFM-CHF (which applies PCA to the static representation)

Since the GDFM-CHF proposed by Trucíos et al. (2023) has proven to be quite competitive, we compare our new proposal only with GDFM-CHF (which applies PCA to the static representation)

Table 1: Out-of-sample performance measures of the minimum variance portfolio with short-selling constraints: AV, SD, SR, ASR, and SO, stand for the average, standard deviation, Sharpe ratio, Adjusted Sharpe ratio, and Sortino ratio, respectively.

	AV	SD	SR	ASR	SO
GDFM-CHF	0.2720	2.6871	0.1012	0.1006	0.1513
GDFM-GPVC	0.3391	2.6718	0.1269	0.1258	0.1895

• Building on previous results based on the GDFM (Trucíos et al., 2023) and PVC (?), we propose a new procedure to forecast the conditional covariance matrix in large portfolios.

- Building on previous results based on the GDFM (Trucíos et al., 2023) and PVC (?), we propose a new procedure to forecast the conditional covariance matrix in large portfolios.
- The new procedure does not require estimating the conditional covariance matrix of the idiosyncratic components using a conditional heteroscedastic method, as they have constant conditional variance.

- Building on previous results based on the GDFM (Trucíos et al., 2023) and PVC (?), we propose a new procedure to forecast the conditional covariance matrix in large portfolios.
- The new procedure does not require estimating the conditional covariance matrix of the idiosyncratic components using a conditional heteroscedastic method, as they have constant conditional variance.
- The new procedure delivers encouraging results, being competitive with the GDFM-CHF.

- Building on previous results based on the GDFM (Trucíos et al., 2023) and PVC (?), we propose a new procedure to forecast the conditional covariance matrix in large portfolios.
- The new procedure does not require estimating the conditional covariance matrix of the idiosyncratic components using a conditional heteroscedastic method, as they have constant conditional variance.
- The new procedure delivers encouraging results, being competitive with the GDFM-CHF.
- Further empirical applications and theoretical results are in progress.

References

- Barigozzi, M. and Hallin, M. (2020). Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals. *Journal of Econometrics*.
- Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. *Review of Economics and Statistics*, 82(4):540–554.
- Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. *Journal of the American Statistical Association*, 100(471):830–840.
- Forni, M., Hallin, M., Lippi, M., and Zaffaroni, P. (2015). Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. *Journal of Econometrics*, 185(2):359–371.

References ii

- Forni, M., Hallin, M., Lippi, M., and Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: asymptotic analysis. *Journal of Econometrics*, 199(1):74–92.
- Forni, M. and Lippi, M. (2011). The general dynamic factor model: One-sided representation results. *Journal of Econometrics*, 163(1):23–28.
- Hallin, M., Hörmann, S., and Lippi, M. (2018). Optimal dimension reduction for high-dimensional and functional time series. *Statistical Inference for Stochastic Processes*, 21(2):385–398.
- Hallin, M. and Liška, R. (2007). Determining the number of factors in the general dynamic factor model. *Journal of the American Statistical Association*, 102(478):603–617.
- Hallin, M. and Trucíos, C. (2023). Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach. *Econometrics and Statistics*, 27:1–15.

References iii

- Hu, Y.-P. and Tsay, R. S. (2014). Principal volatility component analysis. *Journal of Business & Economic Statistics*, 32(2):153–164.
- Li, W., Gao, J., Li, K., and Yao, Q. (2016). Modeling multivariate volatilities via latent common factors. *Journal of Business & Economic Statistics*, 34(4):564–573.
- Trucíos, C., Mazzeu, J. H. G., Hallin, M., Hotta, L. K., Valls Pereira, P. L., and Zevallos, M. (2023). Forecasting conditional covariance matrices in high-dimensional time series: a general dynamic factor approach. *Journal of Business and Economic Statistics*.