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TIME SERIES BIG DATA

• High-Dimensional data
• High-Frequency data
• Alternative data (sentiments, texts, external covariates)
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INTRODUCTION



BASIC CONCEPTS

Let Pt be the closing price at day t, the return at time t is defined by

rt = (Pt − Pt−1)/Pt−1.

0

5000

10000

15000

20000

2015−01 2016−05 2017−09 2019−02

 

B
T

C

0

5000

10000

15000

20000

2015−01 2016−05 2017−09 2019−02

 

B
T

C

−20

−10

0

10

20

2015−01 2016−05 2017−09 2019−02

 
re

tu
rn

s

0

5000

10000

15000

20000

2015−01 2016−05 2017−09 2019−02

 

B
T

C
 p

ri
c
e
s

−20

−10

0

10

20

2015−01 2016−05 2017−09 2019−02

 
B

T
C

 r
e
tu

rn
s

Volatility:
√

V(Yt|Ft−1)
Carlos Trucíos (UNICAMP) Forecasting conditional covariance matrices



VALUE-AT-RISK

VaR
Maximum possible loss for a given portfolio within a confidence
interval (1− α)× 100% over a specific time horizon h

VaRαT+h|T(X) 0

Let XT be a given portfolio returns up to time T, the VaR h-steps-ahead
at level α, denoted by VaRαT+h|T, is a number such that

P
(
XT+h < VaRαT+h|T(X)

)
= α
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EXPECTED SHORTFALL

Expected Shortfall (ES)
VaR is the maximum loss given a confidence level during a certain
period, while the ES is the average loss once this loss overcomes VaR

The ES at level α over a specific time horizon h is given by

ESαT+h|T(X) = E
[
XT+h

∣∣ XT+h ≤ VaRαT+h|T
]
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INTRODUCTION

• In the multivariate framework, most VaR and ES estimation
procedures are based on the estimation of the conditional
covariance matrix.

• The (conditional) covariance matrix is an input parameter for
several portfolio allocation strategies.

• Classical multivariate volatility models are helpful tools for
predicting conditional covariance matrix in small and moderate
dimensions, however, they badly suffer from the so-called “curse
of dimensionality”.
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INTRODUCTION

Some alternatives to estimate the conditional covariance matrix in
high dimensional data are:

• Composite likelihood
• Shrinkage
• Non-parametric approaches
• Dimension reduction techniques
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INTRODUCTION

Dimension reduction techniques to forecast the conditional
covariance matrix:

• Principal components analysis (PCA),

• Independent component analysis (ICA),

• Conditionally uncorrelated components (CUC),

• Dynamic orthogonal components (DOC),

• Principal volatility components (PVC), etc.

However, most dimension reduction techniques are based on a static
approach which is not optimal in a time series context (Hallin et al.,
2018).
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THE GENERAL DYNAMIC FACTOR MODEL



GENERAL DYNAMIC FACTOR MODEL

Let Xt = (X1t X2t . . . Xnt)′, t = 1, ... be a double-indexed stochastic
stationary process with zero mean and finite second order moments.
The GDFM is based on the decomposition

Xit = χit + ξit (1)
χit = bi1(L)u1t + . . .+ biq(L)uqt, i ∈ N, t ∈ Z, (2)

where L stands for a lag operator and the unobservable ui,t, χi,t and
ξi,t, stand for the common shocks, common components and
idiosyncratic components respectively.
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GENERAL DYNAMIC FACTOR MODEL

Under the assumption that the space spanned by the common
components is finite-dimensional, the decomposition (1) takes the
static form

Xit = λi1F1t + . . .+ λirFrt︸ ︷︷ ︸
χit

+ξit, r ≥ q (3)

However, this assumption rules out simple factor-loading patterns
(Forni and Lippi, 2011; Forni et al., 2015, 2017) such as

Xi,t =

χit︷ ︸︸ ︷
ai(1− αiL)−1ut︸ ︷︷ ︸

ai(ut+αiut−1+α2i ut−2+α3i ut−3+...)

+ξit. (4)
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GENERAL DYNAMIC FACTOR MODEL

• Forni et al. (2000) proposed a procedure that does not assume
that the space spanned by the common components is
finite-dimensional. However, is based on a two-sided filter, which
is not satisfactory for forecasting.

• Forni et al. (2005) proposed a procedure which allows for
one-sided filter estimation. However, assume finite-dimensional
factor space.

• Forni et al. (2015, 2017) proposed a procedure which allows
one-sided filter estimation and infinite-dimensional factor space.
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CONDITIONAL COVARIANCE MATRIX

Forni et al. (2015, 2017) show that, χt = (χ1t χ2t . . . χnt)′ admits a
block-structure autoregressive representation

A(L)χt = Rut. (5)

where

A(L) =


A1(L) 0 . . . 0
0 A2(L) . . . 0
...

... . . . 0
0 0 . . . Am(L)

 and R =


R1

R2
...
Rm


with Ak(L) being a (q+ 1)× (q+ 1) polynomial matrix with finite
degree and Rk a (q+ 1)× q matrix, n = m(q+ 1).

Carlos Trucíos (UNICAMP) Forecasting conditional covariance matrices



CONDITIONAL COVARIANCE MATRIX

Proposition

Under assumptions in Barigozzi and Hallin (2020a) and additionally
assuming that ut and ξt are conditionally uncorrelated for any lead
and lag, the conditional variance-covariance matrix of Xt is given by

V(Xt|Ft−1) = R V(ut|Ft−1)R′ + V(ξt|Ft−1). (6)

• ut ∼ MGARCH.
• The conditional covariance matrix of the idiosyncratic factors can
be modelled as a full or diagonal matrix, where each conditional
variance is modelled independently by a GARCH-type model.
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ESTIMATION

• Step 1. Determine the number q of common shocks via an
information criterion, for instance, using Hallin and Liška (2007).

• Step 2. Randomly reorder the n observed series.
• Step 3. Estimate the spectral density matrix of X by

Σ̂X
nT(θ) =

1
2π

MT∑
k=−MT

e−ikθ K
(
k
BT

)
︸ ︷︷ ︸

1−
|k|

[|
√
T|] + 1

Γ̂Xk θ ∈ [0, 2π] (7)

where K(·) is a kernel function, MT a truncation parameter, BT a
bandwidth, and Γ̂Xk the sample lag-k cross-covariance matrix.
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ESTIMATION

• Step 4. Estimate the spectral density matrix of the common
components by

Σ̂χ
nT(θ) := P̂XnT(θ)Λ̂X

nT(θ)P̂X∗nT(θ) θ ∈ [0, 2π]

where Λ̂X
nT(θ) is a q× q diagonal matrix with diagonal elements

the q largest eigenvalues of Σ̂X
nT(θ) and P̂XnT(θ) (with complex

conjugate P̂X∗nT) is the n× q matrix with the associated
eigenvectors.
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ESTIMATION

• Step 5. By inverse Fourier transform of Σ̂χ
n∗T(θ), estimate the

autocovariance matrices Γ̂χ
k of the m sub-vectors

χkt = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)
′, k = 1, ...,m

of dimension (q+ 1). Based on these, compute, after order
identification, the Yule-Walker estimators Âk(L) of the m VAR
filters Ak(L) and stack them into a block-diagonal matrix Ân∗(L).
Compute Ân∗(L)Xn∗t = Ŷn∗t = R̂n∗ ût + ε̂t

• Step 6. Based on the first q standard principal components
of Ŷn∗t, obtain estimates R̂n∗ut of Rn∗ut and, via a Cholesky
identification constraint the estimates R̂n∗ and ût of Rn∗ and ut;
then, an estimate of the impulse-response function is
B̂n∗(L) := [Ân∗(L)]−1R̂n∗ .
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ESTIMATION

• Step 7. Repeat Steps 2 through 7 M times: the final estimates
(denoted as R̂n, ût, and B̂n) are obtained by averaging the
estimates R̂n∗ , ût, and B̂n∗ associated with each iteration. Let
χ̂nt := B̂n(L)ût and ξ̂nt := Xnt − χ̂nt.

• Step 8. The estimator of V(Xt|Ft−1) is given by

V̂(Xt|Ft−1) := R̂V̂(ût|Ft−1)R̂
′
+ V̂(ξ̂t|Ft−1). (8)

The consistency of the method is established under some
assumptions (stationarity, the existence of a spectral density matrix,
etc.). See, Forni et al. (2017), Barigozzi and Hallin (2020b), Trucíos et al.
(2023).
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MONTE CARLO EXPERIMENTS

General settings:

• 500 Monte Carlo replications.
• Panel of dimension 60× 1000 and 600× 700.
• Three DGPs.

• DGP1: Static factor model with ut following a bivariate full BEKK
and ξit following univariate GARCH.

• DGP2: Dynamic factor model with finite-dimensional factor space,
ut follows a bivariate full BEKK and ξit following univariate GARCH.

• DGP3: Dynamic factor model with infinite-dimensional factor
space, ut follows a bivariate full BEKK and ξit following univariate
GARCH.
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MONTE CARLO EXPERIMENTS

Loss function

L(Σ̂T+1|T,ΣT+1|T) =
N∑
i=1

N∑
j=i

w(i, j)(σ̂i,j − σi,j)
2, (9)

where σ̂i,j and σi,j are the (i, j) elements of Σ̂T+1|T and ΣT+1|T. w(i, j) are
weights.

Table 1: Weights w(i, j) in Equation (9), i = 1, . . . ,N, j = i, . . . ,N

D1 w(i, j) = 1 ∀i and j
D2 w(i, j) = 1 when i = j and zero otherwise
D3 w(i, j) = 2 when σ̂i,j, > hi,j; 1 otherwise
D4 w(i, j) = 2 when σ̂i,j, < hi,j; 1 otherwise
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MONTE CARLO EXPERIMENTS

Procedures

• PCA-DCC: The static factors are extracted by using PCA and a DCC
model is applied on the extracted factors. The idiosyncratic
components are modelled by univariate GARCH models.

• DCC: as in Pakel et al. (2020);
• ABC-DCC: dynamic factor extraction under a finite-dimensional
factor space assumption as in Alessi et al. (2009);

• GDFM-CHF: Our proposal.
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MONTE CARLO EXPERIMENTS: N = 60, T = 1000

Gaussian Student−T
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Figure 1: Box plot of the loss function (in logarithm scale) D1, D2, D3 and D4.
500 Monte Carlo replications.
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EMPIRICAL APPLICATION I



EMPIRICAL APPLICATION

Let HT+1 be the conditional covariance matrix of vector returns at time
T+ 1 and ω = (ω1, · · · , ωN) be the portfolio weights.

We are interesting in portfolios with minimum risk subject to some
constraints, i.e.

Min: ω′HT+1ω

subject to ωi ≥ 0 and
N∑
i=1

ωi = 1

This portfolio is called the minimum variance portfolio with no short
sales and is of particular interest for investors.
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EMPIRICAL APPLICATION

• Minimum variance portfolios
• 656 stocks entering the composition of the S&P 500, NASDAQ100
and AMEX (only series with no missing values were considered).

• Stocks traded from January 2, 2011 through June 29, 2018 (T=1884).
• Rolling Window scheme: A window size of 750 days is used for
estimation, which represents a concentration ratio
of 656/750 = 0.875; the out-of-sample period was set to 1134
days.
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EMPIRICAL APPLICATION

At time t = 750, . . . , 1883 (1134 time points), the one-step ahead
conditional covariance matrix is estimated and used to obtain the
optimal portfolio allocation weights.

ω̂t+1|t = argmin
ω

ω′Σ̂t+1|tω,

subject to the restrictions ωi ≥ 0 and
∑n

i=1 ωi = 1.

Then, the resulting (out-of-sample) portfolio return is given by

rp,t+1 :=
n∑
i=1

ω̂i;t+1|tri,t+1
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EMPIRICAL APPLICATION

To evaluate the out-of-sample portfolio performance, we use three
measures:

• SD: Annualized standard deviation (standard deviation of the
out-of-sample portfolio returns ×

√
252);

• IR: Information ratio (IR := AV/SD), with AV being the annualized
average portfolio (average out-of-sample portfolio returns × 252);

• SR: Sortino ratio.

To assess the statistical differences between our proposal and its
competitors we perform the test of Ledoit and Wolf (2011) (for SD) and
Ledoit and Wolf (2008) (for IR).
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EMPIRICAL APPLICATION

Competitors:

• 1/n: equal-weighted portfolio strategy advocated by ?.
• POET: the estimator proposed by ?.
• NL: the nonlinear shrinkage estimator of ?.
• RM2006: the RiskMetrics 2006 methodology of Zumbach (2007).
• DCC: the DCC model with composite likelihood of Pakel et al.
(2020).

• OGARCH: the orthogonal GARCH model of Alexander and
Chibumba (1996).

• GPVC: generalized principal volatility components of Li et al.
(2016).
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EMPIRICAL APPLICATION

Competitors:

• PCA4TS: principal component analysis for second-order
stationary vector time series of Chang et al. (2018).

• PCA-MGARCH: as used in our simulation study.
• ABC: the procedure of Alessi et al. (2009) based on the general
dynamic factor model with finite-dimensional factor space.

• 2GDFM4V: the two-step GDFM procedure for volatilities proposed
by Barigozzi and Hallin (2016, 2017, 2020a); does not consider
conditional cross-covariances.
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EMPIRICAL APPLICATION

Our method outperform all previously mentioned procedures and
performs statistically equal than DCC-NL and AFM-DCC-NL.

• DCC-NL: as proposed by Engle et al. (2017); combines the DCC and
NL procedures.

• AFM-DCC-NL: approximate factor model as in ? but with
unobservable common components obtained by classical PCA.
The covariance matrix of the idiosyncratic components is
estimated using the DCC-NL procedure.
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EMPIRICAL APPLICATION

Table 2: Out-of-sample portfolio performance

SD IR SR
1/n 11.5067 (14) 0.5015 (14) 0.6834 (14)
POET 4.6116 (9) 1.2146 (7) 1.6741 (7)
NL 4.6152 (10) 1.0217 (11) 1.4249 (11)
RM2006 4.5446 (7) 1.2327 (6) 1.7241 (6)
DCC 5.9901 (12) 1.1502 (8) 1.6262 (8)
DCC-NL 3.9358 (2) 1.8371 (2) 2.6227 (2)
OGARCH 4.4551 (5) 1.1051 (10) 1.5616 (10)
GPVC 4.5889 (8) 1.0022 (12) 1.4077 (12)
PCA4TS 4.7256 (11) 1.1364 (9) 1.6032 (9)
PCA-MGARCH 4.4111 (4) 1.4965 (4) 2.0891 (4)
AFM-DCC-NL 3.9472 (3) 1.9764 (1) 2.8974 (1)
ABC 4.5313 (6) 1.4404 (5) 1.9677 (5)
2GDFM4V 10.2431 (13) 0.7992 (13) 1.0997 (13)
GDFM-CHF-DCC 3.9205 (1) 1.8188 (3) 2.4109 (3)
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VAR AND ES ESTIMATION

Let rt = H1/2t ϵt, be the N−dimensional vector of individual returns at
time t

• Step 10. Using the historical returns r1, . . . , rT to obtain the
estimators Ĥt := V̂rNt|t−1 of the conditional covariance matrices
along Steps 1-9, compute the filtered (or devolatilized) return
vectors ϵ̂t := Ĥ−1/2

t rt, where Ĥ1/2t follows from the lower triangular
Cholesky factorization of Ĥt at time t = 1, . . . , T+ 1.
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VAR AND ES ESTIMATION

• Step 11. Generate a bootstrap sample ϵ∗1 , . . . , ϵ
∗
B of size B from the

devolatilized return vectors ϵ̂t, T = 1, . . . , T+ 1 and construct B
one-step-ahead return vectors ri∗T+1 := Ĥ1/2T+1ϵ∗i ; this yields B
simulated one-step-ahead portfolio return
forecasts Ri∗T+1 := ω′ri∗T+1, for i = 1, . . . ,B for portfolio weights
ω = (ω1, . . . ωN)

′.
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VAR AND ES ESTIMATION

• Step 12. The one-step-ahead forecasts of VaRα
T+1 and ESα

T+1 are

V̂aR
α

T+1 := F̂−1R∗T+1(α), (10)

and

ÊS
α

T+1 :=
B∑
i=1

Ri∗T+1I
[
Ri∗T+1 < V̂aR

α

T+1
]∑B

t=1 I
[
Ri∗T+1 < V̂aR

α

T+1
] , (11)

respectively, where F̂−1R∗T+1(α) is the α-quantile of the empirical
distribution of the simulated one-step-ahead portfolio returns
R1∗T+1, . . . ,RB∗T+1 and I[ · ] denotes the indicator function.
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EMPIRICAL APPLICATION

• 652 stocks used in the composition of the S&P500, NASDAQ-100
and AMEX indexes

• From January 3, 2012 to July 1, 2020 (T = 2136 observations)
• A rolling window approach with window size of T= 750 days
(concentration ratio of 652/750 = 0.87).

• 1386 days in the out-of-sample period 8from December 29, 2014
through July 1, 2020).

• In each window, the one-step-ahead VaR and ES is estimated
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EMPIRICAL APPLICATION

Alternative models:

• DCC composite likelihood (Pakel et al., 2020)
• RiskMetrics 2006 methodology (Zumbach, 2007)
• ABC (Alessi et al., 2009)

Classical backtesting procedures (calibration tests and scoring
functions) and scoring functions are used to evaluate the VaR and ES
accuracy.
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EMPIRICAL APPLICATION

Calibration tests:

Test Proposed by Used to evaluate

Unconditional coverage (UC) Kupiec (1995) VaR
Conditional coverage (CC) Christoffersen (1998) VaR
Dynamic quantile (DQ) Engle and Manganelli (2004) VaR
VaR quantile regression (VQ) Gaglianone et al. (2011) VaR
Exceedance residuals (ER) McNeil and Frey (2000) ES and VaR
Conditional calibration (CoC) Nolde et al. (2017) ES and VaR
Exceedance shortfall regression (ESR) Bayer and Dimitriadis (2020) ES

Table 3: Calibration tests used to evaluate VaR and ES accuracy.

H0 : The VaR/ES is correctly specified
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EMPIRICAL APPLICATION

Scoring functions:
For the VaR:

S(VaRα
t , rt) = (α− I[rt ≤ VaRα

t ])(G(rt)− G(VaRα
t )), (12)

For the VaR and ES (jointly):

S
(
(VaRα

t ,ESα
t ), rt

)
=
(
I[rt ≤ VaRα

t ]− α
)
G1(VaRα

t )− I[rt ≤ VaRα
t ]G1(rt)

+ G2(ESα
t )
(
ESα

t − VaRα
t + I[rt ≤ VaRα

t ]
)
(VaRα

t − rt)/α
+ G3(ESα

t ) + G4(rt), (13)
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EMPIRICAL APPLICATION

Calibration tests
Hits UC CC DQ VQ ER CoC ESR1 ESR2 ESR3

1%

RM2006 0.60 0.161 0.051 0.091 0.331 0.493 0.219 0.344 0.218 0.706
DCCc 1.70 0.024 0.000 0.000 0.434 0.404 0.106 0.516 0.505 0.278
ABC 1.90 0.003 0.001 0.000 0.258 0.024 0.052 0.016 0.043 0.036
GDFM-CHF 1.40 0.189 0.224 0.266 0.726 0.564 0.493 0.500 0.576 0.180

2.
5%

RM2006 1.30 0.002 0.000 0.000 0.001 0.522 0.000 0.009 0.011 0.972
DCCc 3.00 0.221 0.003 0.000 0.000 0.087 0.129 0.013 0.165 0.018
ABC 3.10 0.166 0.014 0.000 0.420 0.001 0.227 0.016 0.325 0.256
GDFM-CHF 2.70 0.689 0.602 0.362 0.437 0.230 0.549 0.421 0.834 0.135

5%

RM2006 2.50 0.000 0.000 0.000 0.000 0.416 0.000 0.000 0.438 0.993
DCCc 5.50 0.416 0.000 0.000 0.343 0.037 0.077 0.029 0.035 0.007
ABC 5.50 0.416 0.024 0.000 0.588 0.000 0.324 0.906 0.010 0.409
GDFM-CHF 5.60 0.351 0.147 0.207 0.354 0.369 0.405 0.296 0.766 0.072

Table 4: One-step-ahead VaR and ES backtesting (calibration tests).
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EMPIRICAL APPLICATION

Avg. Scoring functions
QL FZG NZ AL

1%

RM2006 0.038 0.673 1.850 2.178
DCCc 0.039 0.670 1.863 2.181
ABC 0.042 0.698 1.991 2.344
GDFM-CHF 0.032 0.653 1.730 2.060

2.
5%

RM2006 0.075 0.675 1.654 1.975
DCCc 0.075 0.666 1.642 1.951
ABC 0.077 0.677 1.680 2.007
GDFM-CHF 0.066 0.631 1.535 1.816

5%

RM2006 0.123 0.681 1.493 1.797
DCCc 0.121 0.666 1.473 1.759
ABC 0.119 0.668 1.478 1.773
GDFM-CHF 0.110 0.630 1.396 1.649

Table 5: One-step-ahead VaR and ES backtesting (scoring functions). Shaded
cells stand for the smallest scoring function.
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ADDITIVE OUTLIERS

Outliers can deteriorate the out-of-sample performance of both VaR
and ES (Grané and Veiga, 2010; Boudt et al., 2013; Trucíos et al., 2017,
2018; Trucíos et al., 2018)

Monte Carlo Simulations

• Case 1: 10% of series contaminated by outliers.
• Case 2: 25% of series contaminated by outliers.
• Case 3: 50% of series contaminated by outliers

Series were contaminated by one isolated outlier of size equal to 5
times the uncontaminated standard deviation. Outliers are located at
the end of the sample period, 5, 10 and 20 days before the end of the
sample period.
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ADDITIVE OUTLIERS: VAR
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ADDITIVE OUTLIERS: ES
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ADDITIVE OUTLIERS

• Step 1*. Determine the number q of common using the robust
procedure of Trucíos et al. (2021).

• Step 9*. Estimate V(Xt|Ft−1) via

V̂(Xt|Ft−1) := R̂V̂(ût|Ft−1)R̂
′
+ V̂(ξ̂t|Ft−1). (14)

by using the robust procedures of Trucíos et al. (2018) and Trucíos
et al. (2017), for V̂(ût|Ft−1) and V̂(ξ̂t|Ft−1), respectively.
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ADDITIVE OUTLIERS

• Step 11*. Generate a bootstrap sample ϵ∗1 , . . . , ϵ
∗
B of size B from

the devolatilized return vectors ϵ̂t, T = 1, . . . , T+ 1 and construct B
one-step-ahead return vectors ri∗T+1 := Ĥ1/2T+1ρ(ϵ∗i ), with

ρ(xi) =
{xi if d2i < c,
x∗i if d2i ≥ c

where x∗i being another bootstrap sample from F
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ADDITIVE OUTLIERS: VAR
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ADDITIVE OUTLIERS: ES
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CONCLUSIONS

• A new procedure to forecast the conditional covariance matrix in
high-dimensional data with good finite sample properties and
consistency results, is proposed.

• A filtered historical simulation method with the conditional
covariance estimator of Trucíos et al. (2023) to estimate the VaR
and ES is suggested.

• A robust-to-outliers alternative is also proposed. Experiments
with simulated data are encouraging.
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