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INTRODUCTION

Let Pt be the closing price of a given asset at time t. Returns are
defined as

rt =
Pt − Pt−1
Pt−1

=
∆Pt
Pt−1

≈ log(Pt/Pt−1)
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Figure 1: Prices (left panel) and returns (right panel) of Bitcoin
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INTRODUCTION

• Volatility (i.e, conditional standard deviations) is very important
in finance.

• In a univariate context, there several option to forecast the
volatility: GARCH-type, GAS, Stochastic volatility.

• In a multivariate context (for small or moderate dimensions),
there are some approaches mainly based on multivariate GARCH
models (MGARCH)

• In a high-dimensional context (hundred or even thousands of
time series) the problems is even harder.

Our work is placed in a high-dimensional context!
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INTRODUCTION

• The conditional covariance matrix plays an important role in
economics and finance.

• Classical multivariate volatility models are helpful tools for
predicting conditional covariance matrix in small and moderate
dimensions, but they badly suffer from the so-called “curse of
dimensionality”.

• To overcome this problem, alternative procedures have been
proposed in the literature.

• Some of those procedures are based on dimension reduction
techniques.
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INTRODUCTION

Dimension reduction techniques to forecast the conditional
covariance matrix:

• Principal components analysis (PCA),

• Independent component analysis (ICA),

• Conditionally uncorrelated components (CUC),

• Dynamic orthogonal components (DOC),

• Principal volatility components (PVC), etc.

Most dimension reduction techniques are based on a static approach
which is not optimal in a time series context (Hallin et al., 2018).
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THE GENERAL DYNAMIC FACTOR MODEL



GENERAL DYNAMIC FACTOR MODEL

Flexivel, general and based on representation results.

• Sucessfully applied in several fields
• Adopted by central banks and other organizations worldwide.
• Proposed in the early 2000s.
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GENERAL DYNAMIC FACTOR MODEL

Let Xt = (X1t X2t . . . Xnt)′, t = 1, ... be a double-indexed second order
stationary stochastic process with zero mean and finite second order
moments. The GDFM is based on the decomposition

Xt = χt + ξt (1)

Xit = χit + ξit (2)
χit = bi1(L)u1t + . . .+ biq(L)uqt, i ∈ N, t ∈ Z, (3)

where L stands for a lag operator and the unobservable ui,t, χi,t and
ξi,t, stand for the common shocks, common components and
idiosyncratic components respectively.
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GENERAL DYNAMIC FACTOR MODEL

Under the assumption that the space spanned by the common
components is finite-dimensional, the decomposition (2) takes the
static form

Xit = λi1F1t + . . .+ λirFrt︸ ︷︷ ︸
χit

+ξit, r ≥ q (4)

However, this assumption rules out simple factor-loading patterns
(Forni and Lippi, 2011; Forni et al., 2015, 2017) such as

Xi,t =

χit︷ ︸︸ ︷
ai(1− αiL)−1ut︸ ︷︷ ︸

ai(ut+αiut−1+α2i ut−2+α3i ut−3+...)

+ξit. (5)
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GENERAL DYNAMIC FACTOR MODEL

• Forni et al. (2000) proposed a procedure that does not assume
that the space spanned by the common components is
finite-dimensional. However, is based on a two-sided filter, which
is not satisfactory for forecasting.

• Forni et al. (2005) proposed a procedure which allows for
one-sided filter estimation. However, assume finite-dimensional
factor space.

• Forni et al. (2015, 2017) proposed a procedure which allows
one-sided filter estimation and infinite-dimensional factor space.
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PRINCIPAL VOLATILITY COMPONENTS



PRINCIPAL VOLATILITY COMPONENTS (PVC)

Similar to PCA.

• Hu, Y. P., & Tsay, R. S. (2014). Principal volatility component
analysis. Journal of Business & Economic Statistics, 32(2), 153-164.

• Li, W., Gao, J., Li, K., & Yao, Q. (2016). Modeling multivariate
volatilities via latent common factors. Journal of Business &
Economic Statistics, 34(4), 564-573.
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PRINCIPAL VOLATILITY COMPONENTS (PVC)

• PCA decomposes a N-dimensional vector into N
contemporaneous uncorrelated components according with the
amount of variability explained by the components.

• PCA uses the sample covariance matrix.
• Hu and Tsay (2014, JBES) proposed PVC: A generalization of PCA
that takes into account the dynamic dependence between the
volatility processes.

• The covariance matrix is replaced by a matrix that summarizes
the dynamic dependence of volatilities.

• With PVC we identify common volatility components and also
components with no conditional heteroscedasticity.
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PRINCIPAL VOLATILITY COMPONENTS (PVC)

Let the Cumulative Generalized Kurtosis Matrix defined by

Γ∞ =
∞∑
ℓ=1

k∑
i=1

m∑
j=1

E
[(
y′tyt − E(y′tyt)

) (
xij,t−ℓ − E(xij,t)

)]
,

where xij,t−k is a function of the cross product yi,t−k and yj,t−k

Additionally,

Γ∞M = MΛ, where

• Λ is the diagonal matrix of ordered eigenvalues,
• M = [m1, ...,mk] is the matrix of normalized eigenvectors and
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PRINCIPAL VOLATILITY COMPONENTS (PVC)

Hu and Tsay (2014) proves that, under mild conditions, there exist r
linear combination of yt that have (ARCH effects a k− r linear
combination of yt that have no ARCH effects if and only if
rank (Γ∞) = r.

The v-th PVC is defined as

zvt = m′
vyt

• zvt, zut are (contemporaneously) uncorrelated if λ2v ̸= λ2u.
• zvt may still be correlated with lagged values of zut.
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PRINCIPAL VOLATILITY COMPONENTS (PVC)

Li et al. (2016) proposed an alternative PVC characterized only by the
second moment. In this approach, the matrix Γ∞ is replaced by

G =

g∑
k=1

T∑
t=1

ω(yt)E2
[(
yty′t − Σ

)
I(∥yt−k∥ ≤ ∥yt∥)

]
,

where ω(·) is a weight function and ∥ · ∥ is the L1 norm.

The alternative procedure has the same properties of the proposal of
Hu and Tsay (2014) but only requires finite second-order moments.
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PRINCIPAL VOLATILITY COMPONENTS (PVC)

The matrix G is estimated in a natural way by

Ĝ =

g∑
k=1

T∑
τ=1

ω(yτ )

 1
T− k

T∑
t=k+1

[(
yty′t − Σ̂

)
I(∥yt−k∥ ≤ ∥yτ∥)

]2 .

Trucíos et al. (2019) based on Hu and Tsay (2014) and Li et al. (2016)
proposes a robust-to-outliers PVC.
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THE NEW PROPOSAL

GDFM + PVC
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THE NEW PROPOSAL

Forni et al. (2015, 2017) show that, χt = (χ1t χ2t . . . χnt)′ admits a
block-structure autoregressive representation

A(L)χt = Rut. (6)

where

A(L) =


A1(L) 0 . . . 0
0 A2(L) . . . 0
...

... . . . 0
0 0 . . . Am(L)

 and R =


R1

R2
...
Rm


with Ak(L) being a (q+ 1)× (q+ 1) polynomial matrix with finite
degree and Rk a (q+ 1)×q matrix, n = m(q+ 1) and n tends to infinity.
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THE NEW PROPOSAL

Proposition

Trucíos et al. (2023) under assumptions in Barigozzi and Hallin (2020)
and additionally assuming that ut and ξt are conditionally
uncorrelated for any lead and lag, the conditional
variance-covariance matrix of Xt is given by

V(Xt|Ft−1) = R V(ut|Ft−1)R′ + V(ξt|Ft−1). (7)

• ut ∼ MGARCH.
• ξt ∼ MGARCH or univariate independent GARCH models.
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THE NEW PROPOSAL

Estimation procedure

• Step 1. Determine the number q of common shocks via an
information criterion, for instance, using Hallin and Liška (2007).

• Step 2. Randomly reorder the n observed series.
• Step 3. Estimate the spectral density matrix of X by

Σ̂X
nT(θ) =

1
2π

MT∑
k=−MT

e−ikθ K
(
k
BT

)
︸ ︷︷ ︸

1−
|k|

[|
√
T|] + 1

Γ̂Xk θ ∈ [0, 2π] (8)

where K(·) is a kernel function, MT a truncation parameter, BT a
bandwidth, and Γ̂Xk the sample lag-k cross-covariance matrix.
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ESTIMATION

• Step 4. Estimate the spectral density matrix of the common
components by

Σ̂χ
nT(θ) := P̂XnT(θ)Λ̂X

nT(θ)P̂X∗nT(θ) θ ∈ [0, 2π]

where Λ̂X
nT(θ) is a q× q diagonal matrix with diagonal elements

the q largest eigenvalues of Σ̂X
nT(θ) and P̂XnT(θ) (with complex

conjugate P̂X∗nT) is the n× q matrix with the associated
eigenvectors.

• Step 5. Let n∗ := m(q+ 1) with m :=
⌈

n
q+1

⌉
and denote by Σ̂χ

n∗T(θ)

the n∗ × n∗ spectral density matrix corresponding to Xn∗t.
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ESTIMATION

• Step 6. By inverse Fourier transform of Σ̂χ
n∗T(θ), estimate the

autocovariance matrices Γ̂χ
k of the m sub-vectors

χkt = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)
′, k = 1, ...,m

of dimension (q+ 1). Based on these, compute, after order
identification, the Yule-Walker estimators Âk(L) of the m VAR
filters Ak(L) and stack them into a block-diagonal matrix Ân∗(L).
Compute Ân∗(L)Xn∗t = Ŷn∗t = R̂n∗ ût + ε̂t

• Step 7. Based on the first q principal volatility components
of Ŷn∗t, obtain estimates R̂n∗ut of Rn∗ut and, via a Cholesky
identification constraint the estimates R̂n∗ and ût of Rn∗ and ut;
then, an estimate of the impulse-response function is
B̂n∗(L) := [Ân∗(L)]−1R̂n∗ .

Carlos Trucíos (UNICAMP) Forecasting high-dimensional conditional covariance matrices



ESTIMATION

• Step 6. By inverse Fourier transform of Σ̂χ
n∗T(θ), estimate the

autocovariance matrices Γ̂χ
k of the m sub-vectors

χkt = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)
′, k = 1, ...,m

of dimension (q+ 1). Based on these, compute, after order
identification, the Yule-Walker estimators Âk(L) of the m VAR
filters Ak(L) and stack them into a block-diagonal matrix Ân∗(L).
Compute Ân∗(L)Xn∗t = Ŷn∗t = R̂n∗ ût + ε̂t
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of Ŷn∗t, obtain estimates R̂n∗ut of Rn∗ut and, via a Cholesky
identification constraint the estimates R̂n∗ and ût of Rn∗ and ut;
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ESTIMATION

• Step 8. Repeat Steps 2 through 7 M times: the final estimates
(denoted as R̂n, ût, and B̂n) are obtained by averaging the
estimates R̂n∗ , ût, and B̂n∗ associated with each iteration. Let
χ̂nt := B̂n(L)ût and ξ̂nt := Xnt − χ̂nt.

• Step 9. The estimator of V(Xt|Ft−1) is given by

V̂(Xt|Ft−1) := R̂V̂(ût|Ft−1)R̂
′
+ V̂(ξ̂t|Ft−1). (9)
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ESTIMATION

Common shocks:

• The common shocks ut are assumed to be a q-dimensional
stationary stable-by-aggregation MGARCH process (examples of
stable-by-aggregation MGARCH are the full VECH and full BEKK).

• Estimators for BEKK or VECH are quite unstable and report several
issues even in small dimensions.

• In practice, we use a DCC model (numerical experiments support
our choice) instead of BEKK or VECH estimators.
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ESTIMATION

Idiosyncratic components:

• Idiosyncratic components ξt = (ξ1t, . . . , ξnt) can be modelled as
independent GARCH-type processes as in Hallin and Trucíos
(2021) or can be modelled as a full matrix as in Trucíos et al.
(2023),

• Although a full matrix does not completely escape from the curse
of dimensionality, it remains implementable via the procedure of
Engle et al. (2019).
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ESTIMATION

Our method extends

• Alessi et al. (2009) [European Central Bank WP Series],
• Li et al. (2016) [Journal of Business & Economic Statistics]
• Barigozzi and Hallin (2020) [Journal of Econometrics],
• De Nard et al. (2021) [Journal of Econometrics]
• Trucíos et al. (2023) [Journal of Business & Economic Statistics]
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EMPIRICAL APPLICATION

Let HT+1 be the conditional covariance matrix of vector returns at time
T+ 1 and ω = (ω1, · · · , ωN) be the portfolio weights.

We are interesting in portfolios with minimum risk subject to some
constraints, i.e.

Min: ω′HT+1ω

subject to ωi ≥ 0 and
N∑
i=1

ωi = 1

This portfolio is called the minimum variance portfolio with no short
sales and is of particular interest for investors.
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EMPIRICAL APPLICATION

• Minimum variance portfolios
• 656 stocks entering the composition of the S&P 500, NASDAQ100
and AMEX (only series with no missing values were considered).

• Stocks traded from January 2, 2011 through June 29, 2018 (T=1884).
• Rolling Window scheme: A window size of 750 days is used for
estimation, which represents a concentration ratio
of 656/750 = 0.875; the out-of-sample period was set to 1134
days.
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EMPIRICAL APPLICATION

At time t = 750, . . . , 1883 (1134 time points), the one-step ahead
conditional covariance matrix is estimated and used to obtain the
optimal portfolio allocation weights.

ω̂t+1|t = argmin
ω

ω′Σ̂t+1|tω,

subject to the restrictions ωi ≥ 0 and
∑n

i=1 ωi = 1.

Then, the resulting (out-of-sample) portfolio return is given by

rp,t+1 :=
n∑
i=1

ω̂i;t+1|tri,t+1
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EMPIRICAL APPLICATION

To evaluate the out-of-sample portfolio performance, we use three
measures:

• SD: Annualized standard deviation (standard deviation of the
out-of-sample portfolio returns ×

√
252);

• IR: Information ratio (IR := AV/SD), with AV being the annualized
average portfolio (average out-of-sample portfolio returns × 252);

To assess the statistical differences between our proposal and its
competitors we perform the test of Ledoit and Wolf (2011) (for SD) and
Ledoit and Wolf (2008) (for IR).
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EMPIRICAL APPLICATION

Competitors:

• 1/n: equal-weighted portfolio strategy advocated by DeMiguel
et al. (2009).

• POET: the estimator proposed by Fan et al. (2013).
• NL: the nonlinear shrinkage estimator of Ledoit and Wolf (2012).
• RM2006: the RiskMetrics 2006 methodology of Zumbach (2007).
• DCC: the DCC model with composite likelihood of Pakel et al.
(2021).

• OGARCH: the orthogonal GARCH model of Alexander and
Chibumba (1996).

• GPVC: generalized principal volatility components of Li et al.
(2016).
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EMPIRICAL APPLICATION

Competitors:

• PCA4TS: principal component analysis for second-order
stationary vector time series of Chang et al. (2018).

• PCA-MGARCH: as used in our simulation study.
• ABC: the procedure of Alessi et al. (2009) based on the general
dynamic factor model with finite-dimensional factor space.

• 2GDFM4V: the two-step GDFM procedure for volatilities proposed
by Barigozzi and Hallin (2016, 2017, 2020); does not consider
conditional cross-covariances.

• GDFM-CHF-DCC: our previous proposal Trucíos et al. (2023)
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EMPIRICAL APPLICATION

Table 1: Out-of-sample portfolio performance

SD IR
1/n 11.5067 (15) 0.5015 (15)
POET 4.6116 (10) 1.2146 (8)
NL 4.6152 (11) 1.0217 (12)
RM2006 4.5446 (8) 1.2327 (7)
DCC 5.9901 (13) 1.1502 (9)
DCC-NL 3.9358 (2) 1.8371 (2)
OGARCH 4.4551 (6) 1.1051 (11)
GPVC 4.5889 (9) 1.0022 (13)
PCA4TS 4.7256 (12) 1.1364 (10)
PCA-MGARCH 4.4111 (5) 1.4965 (5)
AFM-DCC-NL 3.9472 (3) 1.9764 (1)
ABC 4.5313 (7) 1.4404 (6)
2GDFM4V 10.2431 (14) 0.7992 (14)
GDFM-CHF-DCC 3.9115 (1) 1.7065 (4)
GDFM-PVC 3.9931(4) 1.7507 (3)
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EMPIRICAL APPLICATION

Our method outperform all previously mentioned procedures and
performs statistically equal than DCC-NL, AFM-DCC-NL and
GDFM-CHF-DCC.

• DCC-NL: as proposed by Engle et al. (2019); combines the DCC and
NL procedures.

• AFM-DCC-NL: approximate factor model as in De Nard et al. (2021)
but with unobservable common components obtained by
classical PCA. The covariance matrix of the idiosyncratic
components is estimated using the DCC-NL procedure.

• GDFM-CHF-DCC: our previous proposal Trucíos et al. (2023)
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CONCLUSIONS

• Based on the one-sided estimation procedures of Forni et al.
(2015, 2017), Barigozzi and Hallin (2020) and Li et al. (2016), we
propose a forecasting method for the conditional covariance
matrix in high-dimensional time series.

• Our proposal performs as good as the cutting-edge procedures of
Engle et al. (2019), De Nard et al. (2021) and Trucíos et al. (2023)

• The initial results are quite encouraging
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