Shrinking the sample covariance matrix
Instituto de Matemática, Estatística e Computação Científica (IMECC),
Universidade Estadual de Campinas (UNICAMP).
Which is the best estimator of the populational mean in a multivariate setting (\(N > 3\))?
Any Shrinkage estimator for the large-dimensional covariance matrix has three ingredients:
S, F and \(\delta\)
Notation
A linear shrinkage estimator is given by:
\[\hat{\Sigma} = (1 - \delta)S + \delta F\]
\(F\) | Reference |
---|---|
\(\sigma^2 \times \mathbb{I}\) | A well-conditioned estimator for large-dimensional covariance matrices (Ledoit and Wolf 2004a) |
Single factor of Sharpe (1963) (CAPM) | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection (Ledoit and Wolf 2003) |
\(f_{ij} = \sqrt{\sigma_{ii}\sigma_{jj}}\rho\) | Honey, I shrunk the sample covariance matrix (Ledoit and Wolf 2004b) |
\(f_{ij} = \eta\) and \(f_{ii} = \sigma^2\) | Essays on risk and return in the stock market (Ledoit 1995) |
Proof
Queremos minimizar \[\mathbb{E} || \hat{\Sigma} - \Sigma ||^2,\] em que \(\hat{\Sigma} = \delta \nu I + (1 - \delta)S\).
\[\mathbb{E} || \hat{\Sigma} - \Sigma ||^2\]
\[= \mathbb{E} || \delta \nu I + (1 - \delta)S - \Sigma ||^2\]
\[= \mathbb{E} || \delta \times (\nu I - \Sigma) + (1 - \delta) \times(S - \Sigma) ||^2\]
Recuerde
\(|| \alpha A + \beta B ||^2 = \alpha^2 ||A||^2 + \beta^2 ||B||^2 + 2\alpha \beta <A, B>\)
\[= \mathbb{E} || \delta \times (\nu I - \Sigma) + (1 - \delta) \times(S - \Sigma) ||^2\]
\[= \mathbb{E} \Big[ \delta^2 ||\nu I - \Sigma||^2 + (1 - \delta)^2 || S - \Sigma ||^2 + 2 \delta (1 - \delta) <\nu I - \Sigma, S - \Sigma >) \Big]\]
\[= \delta^2 ||\nu I - \Sigma||^2 + (1 - \delta)^2 \mathbb{E} || S - \Sigma ||^2 + \underbrace{2 \delta (1 - \delta) <\nu I - \Sigma, \underbrace{\mathbb{E} (S - \Sigma)}_{0} >)}_{0} \Big]\]
\[= \delta^2 ||\nu I - \Sigma||^2 + (1 - \delta)^2 \mathbb{E} || S - \Sigma ||^2\]
Observação
Encontrar o \(\nu\) óptimo, não depende de \(\delta\). Assim, minimizando \(||\nu I - \Sigma||^2 =\nu^2 ||I||^2 + ||\Sigma||^2 - 2\nu <I, \Sigma>.\):
Derivando w.r.t \(\nu\) e igualando a zero:
\[2 \nu \underbrace{||I||^2}_{1} = 2 <I, \Sigma>\]
\[\nu = <I, \Sigma> = \mu\]
Subtituyendo \(\nu\) por su valor optimo:
\[= \delta^2 ||\mu I - \Sigma||^2 + (1 - \delta)^2 \mathbb{E} || S - \Sigma ||^2\]
Lema
Sejan \(\mu = <I, \Sigma>\), \(\alpha^2 = ||\Sigma - \nu I||^2\), \(\beta^2 = \mathbb{E} ||S - \Sigma||^2\) e \(\rho^2 = \mathbb{E} || S - \mu I ||^2\). Então:
\[\alpha^2 + \beta^2 = \rho^2.\]
\[= \delta^2 \alpha^2 + (1 - \delta)^2 \beta^2\]
\[= \delta^2 \alpha^2 + (1 - \delta)^2 \beta^2\]
Derivando w.r.t \(\delta\)
\[2 \delta \alpha^2 - 2 (1 - \delta) \beta^2.\]
Igualando a zero:
\(\delta \alpha^2 = \beta^2 - \delta \beta^2 \quad \rightarrow \quad \delta = \dfrac{\beta^2}{\alpha^2 + \beta^2} = \dfrac{\beta^2}{\rho^2}\)
Note
\[\delta = \dfrac{\beta^2}{\alpha^2 + \beta^2} = \dfrac{\mathbb{E} ||S - \Sigma||^2}{\mathbb{E} || S - \mu I ||^2} \quad e \quad 1-\delta = \dfrac{\alpha^2}{\alpha^2 + \beta^2} = \dfrac{||\Sigma - \nu I||^2}{\mathbb{E} || S - \mu I ||^2}\]
Can be proved that
Em que \(m = <S, I>\), \(d^2 = ||S - mI||^2\), \(\bar{b}^2 = \dfrac{1}{n^2} \sum_{k = 1}^n ||x_k x_k' - S||^2\), \(b^2 = min(\bar{b}^2, d^2)\) and \(a^2 = d^2 - b^2\).
First Idea
Let \(\lambda_1, \cdots, \lambda_N\) be the eiganvalues of \(S\) and let
\[(1 - \delta) S + \delta F = \hat{\Sigma} = U \Lambda^{\ast} U\] be the spectral decomposition of \(\hat{\Sigma}\).
Can be proved that the elements \(\lambda_1^{\ast}, \cdots, \lambda_N^{\ast}\) of the diagonal matrix \(\Lambda^{\ast}\) are equal to \[\lambda_i^{\ast} = \delta \sigma^2 + (1 - \delta) \lambda_i\]
Carlos Trucíos (IMECC/UNICAMP) | FCM-UNMSM 2025 | Risk-Based Portfolio Allocation | ctruciosm.github.io